
6/25/2021 6.s090

https://smatz.mit.edu/6s090/week5/readings 1/9

Readings for Week 5

Licensing Information

The readings for 6.s090 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

License. You are free to make and share verbatim copies (or modified versions) under the terms of that license.

Portions of these readings were modified or copied verbatim from the very nice book Think Python 2e by Allen Downey.

Table of Contents

1) Introduction

2) More Examples

2.1) Calling Functions From Within Functions, Shadowing Globals

2.2) Defining a Function Within a Function

2.3) A Reminder

3) Functions Are First-Class

3.1) Functions as Arguments

3.2) Function-ception and Returning Functions

3.3) More Environment Diagrams

4) Defining Functions

5) Summary

1) Introduction

Last week, we introduced a very powerful means of abstraction in Python: functions, which allowed us to abstract away the

details of a particular computation so that it could be computed multiple times on different inputs. We spent some time

then on the details of how Python interpreted functions. This week's readings will, first, revisit those details with two more

examples. In particular, we'll focus on the the issue of scoping (deciding how and where Python looks up variable names).

Then, we'll discuss the "first-class" nature of Python functions. Finally, we'll introduce some snazzy new function syntax.

2) More Examples

To begin, we will step through two complex function examples with environment diagrams. These both build upon the

things we learned in last week's reading, so you may wish to review those now.

2.1) Calling Functions From Within Functions, Shadowing Globals

First we walk through the following piece of (admittedly silly) code:

def f(x):
 x = x + y
 print(x)
 return x

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://greenteapress.com/wp/think-python-2e/
http://www.allendowney.com/wp/
https://smatz.mit.edu/6s090/week4/readings

6/25/2021 6.s090

https://smatz.mit.edu/6s090/week5/readings 2/9

def g(y):
 y = 17
 return f(x+2)

x = 3
y = 4
z = f(6)

a = g(y)

print(z)
print(a)
print(x)
print(y)

Try to use an environment diagram to predict what values will be printed to the screen as this program runs. You can step

through our explanation of how this code runs using the buttons below:

<< First Step < Previous Step Next Step > Last Step >>

STEP 1

The two definition statements create two new functions and bind them to f and g , respectively, resulting in

the diagram above.

At this point, no values have been printed.

2.2) Defining a Function Within a Function

As another example, let's walk through the following piece of code. This piece of code demonstrates a new idea: because

function bodies can contain arbitrary code, they can also include other function definitions! Consider the following code:

6/25/2021 6.s090

https://smatz.mit.edu/6s090/week5/readings 3/9

x = 7
a = 2

def foo(x):
 def bar(y):
 return x + y + a
 z = bar(x)
 return z

print(foo(14))
print(foo(27))

Try to use an environment diagram to predict what values will be printed to the screen as this program runs. You can step

through our explanation of how this code runs using the buttons below:

<< First Step < Previous Step Next Step > Last Step >>

STEP 8

Next, we hit the return statement. The call to foo will return this same 30 . This value will then be printed

(because of the print statement in the main program), and the frame will be cleaned up.

2.3) A Reminder

If you find these diagrams tedious, we get it... In the end, there's a reason we want computers to be the one doing this, after

all; they're much better at these operations than we are, and much faster! So in the short term, this is tedious. But the long-

term benefits are really great! This kind of practice is helpful in building up a mental model of Python's behavior, which is

important so that when you encounter unexpected behavior, you can come back to the model. With practice, this kind of

thinking will become second nature, and you won't have to draw these diagrams out in such detail.

3) Functions Are First-Class

6/25/2021 6.s090

https://smatz.mit.edu/6s090/week5/readings 4/9

We now shift gears to learn about a powerful feature of Python: that it treats functions as first-class objects, which means

that functions in Python can be manipulated in many of the same ways that other objects can be (specifically, they can be

passed as arguments to other functions, defined inside of other functions, returned from other functions, and assigned to

variables). In this section, we will explore how we can make use of this feature in our programs.

3.1) Functions as Arguments

Imagine that you wanted to make plots of several different functions. To do that, you would need to figure out which "y"

values correspond to each of a number of "x" values. The following code computes these "y" values for different functions:

import math

def sine_response(lo, hi, step):
 out = [] # list of "y" values
 i = lo
 while i <= hi:
 out.append(math.sin(i)) # compute "y" value
 i += step # move to next "x" value
 return out

def cosine_response(lo, hi, step):
 out = []
 i = lo
 while i <= hi:
 out.append(math.cos(i))
 i += step
 return out

def double(x):
 return 2*x

def double_response(lo, hi, step):
 out = []
 i = lo
 while i <= hi:
 out.append(double(i))
 i += step
 return out

def square_response(lo, hi, step):
 out = []
 i = lo
 while i <= hi:
 out.append(i**2)
 i += step
 return out

Now imagine that you wanted to change the way that you were making the response list (or, change anything at all about

the functions' behaviors, really). As it stands now, this would be a pain, because you would have to manually change each of

the above functions. However, we can fix this by making a general function called response , which takes a function f as

input and returns the list of f 's outputs over the specified range:

http://en.wikipedia.org/wiki/First-class_function

6/25/2021 6.s090

https://smatz.mit.edu/6s090/week5/readings 5/9

def response(f, lo, hi, step):
 out = []
 i = lo
 while i <= hi:
 out.append(f(i)) # here, we apply the provided function to i
 i += step
 return out

Notice that, inside of the definition of response , we call f , the function that was passed in as an argument. Using

response , we could compute the response of our double function from earlier:

These two compute the same response!
out = double_reponse(0, 1, 0.1)
out = response(double, 0, 1, 0.1)

When we pass in double as an argument, we do not put parentheses after it. This is because we want to refer to the

function itself (which is called double), and not to any particular output of the function (which we'd get by calling it, such as

in double(7)).

Note that we could compute responses for all of the functions described above using this new response function:

sine_out = response(math.sin, 0, 1, 0.1)
cosine_out = response(math.cos, 0, 1, 0.1)
double_out = response(double, 0, 1, 0.1)
def square(x):
 return x**2
square_out = response(square, 0, 1, 0.1)

3.2) Function-ception and Returning Functions

Another useful feature is that functions can not only be passed in as arguments to functions, they can also be returned as

the result of calling other functions! Imagine that we had the following functions, each designed to add a different number

to its input:

def add1(x):
 return x+1

def add2(x):
 return x+2

If we wanted to make a whole lot of these kinds of functions (add3 , add4 , add5 , ...), it would be nice to have an automated

way of making them, rather than defining each new function by hand. We can do this in Python with:

def add_n(n):
 def inner(x):

6/25/2021 6.s090

https://smatz.mit.edu/6s090/week5/readings 6/9

 return x + n
 return inner

This may be a little difficult to understand at first, but what is happening is this: when add_n is called, it will make a new

function (here, called inner) using the def keyword, and it will then return this function.

Here is an example of the use of this function (including using it to recreate add1 and add2 from above:

add1 = add_n(1)
add2 = add_n(2)

print(add2(3)) # prints 5
print(add1(7)) # prints 8
print(add_n(8)(9)) # prints 17

Try Now:

What type is each of the following values?

add_n

add_n(7)

add_n(9)(2)

add_n(0.2)(3)

add_n(0.8)(2)

Show/Hide

add_n is a function , as with other examples we saw before.

add_n(7) is the result of calling add_n with 7 as its argument, which will also be a function .

add_n(9)(2) calls add_n with an argument of 9 , and then it calls the result with an argument

of 2 . This yields 11 , an int .

add_n(0.2)(3) yields 3.2 , a float .

add_n(0.8)(2) yields 2.8 , a float .

3.3) More Environment Diagrams

The examples above may be a little bit surprising, but we can understand them by working through them using an

environment diagram. Even if they aren't surprising, it's important to know exactly what Python is doing under the hood.

Here, we'll look at simulating a piece of the above code using an environment diagram:

def add_n(n):
 def inner(x):
 return x + n
 return inner

6/25/2021 6.s090

https://smatz.mit.edu/6s090/week5/readings 7/9

add1 = add_n(1)
add2 = add_n(2)

print(add2(3))
print(add1(7))

<< First Step < Previous Step Next Step > Last Step >>

STEP 1

The first definition statement creates a function add_n , as shown in the diagram above. Note that, as before,

defining the function does not cause the body of the function to be executed. As such, we have not yet hit the

definition of inner (indeed, we will not hit it until we call add_n).

4) Defining Functions

To close, we introduce a convenient new way to define functions.

The most common way to define functions in Python, which we've already seen, is via the def keyword. For example, earlier

we made a function that doubled its input, like so:

def double(x):
 return 2*x

Recall that this will make a new function object in memory, and associate the name double with that object.

Python has another way of defining functions: the lambda keyword1. The below expression is also a function that doubles

its input:

lambda x: 2*x

6/25/2021 6.s090

https://smatz.mit.edu/6s090/week5/readings 8/9

The variable name(s) before the colon, here just x , are the names of the arguments. The expression after the colon is what

the function will return.

This function is almost exactly the same as double , except that it does not have a name.

We could have used a lambda instead of a def when creating the response for double from above:

double_out = response(lambda x: 2*x, 0, 1, 0.1)

If we did not care about being able to access double outside of computing its response, it might make sense to do this. This

is the same as passing a function in as the first argument to response ; the function is just being defined with lambda

instead of with def .

We could do the same to get the response for square :

square_out = response(lambda x: x**2, 0, 1, 0.1)

And we could have have defined add_n as follows:

def add_n(n):
 return lambda x: x+n

You can also define functions of more than one argument using lambdas. Both of the below pieces of code define

multiply to be a function which returns the multiplication of its two inputs, for example:

def multiply(a, b):
 return a*b

multiply = lambda a, b: a*b

You should know that lambda , while sometimes a nice convenience, is never necessary—you can always use def instead!

Similar to the comprehension syntax from last week, the lambda syntax is less explicit about what Python is doing than its

def counterpart, and it's harder to debug since it cannot include print statements. As such, use it sparingly, and only when

the function body is simple (e.g. a one-line return statement).

5) Summary

In this set of readings, we revisited the details of how Python invokes functions. We also learned the ways in which Python

functions are first-class objects. They can be treated just like any other objects in Python: among other things, they can be

passed as arguments to functions and can be returned as the result of other functions! And we saw the lambda keyword.

In next week's readings, we'll investigate one way to use functions: recursion. And we'll talk about strategies for designing

large programs.

https://smatz.mit.edu/6s090/week4/readings#_extras_syntactic_sugar

6/25/2021 6.s090

https://smatz.mit.edu/6s090/week5/readings 9/9

Footnotes

1 This may seem like a bizarre name, but it comes from a mathematical system for expressing computation, called the

Lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus

