
Readings for Unit 7

Licensing Information

The readings for 6.s090 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. You are free to make and share verbatim copies (or modified versions) under the terms of that license.

Portions of these readings were modified or copied verbatim from the very nice book Think Python 2e by Allen Downey.

PDF of these readings also available to download: 6s090_reading7.pdf

Table of Contents

• 1) Introduction
• 2) Classes and Instances
• 3) Custom Classes and Attributes

◦ 3.1) Creating Instances of User-Defined Classes
◦ 3.2) Attributes

▪ 3.2.1) Name Resolution
◦ 3.3) Example: Rectangles

• 4) Classes and Functions
◦ 4.1) Functions that Modify Objects
◦ 4.2) Pure Functions

• 5) Classes and Methods
◦ 5.1) What is self?

▪ 5.1.1) Why is self Useful?
• 6) The __init__ Method
• 7) Some Other "Magic" Methods
• 8) Extra Goodies

◦ 8.1) "any" and "all"
◦ 8.2) Multiple Inline Comparisons
◦ 8.3) Error Handling

• 9) Defining Functions - Lambda Notation
◦ 9.1) Enumerate
◦ 9.2) Zip

• 10) Python Goodies Review
◦ 10.1) Sequence Unpacking
◦ 10.2) Generating Graphs with matplotlib
◦ 10.3) Slicing
◦ 10.4) Optional Arguments to Functions
◦ 10.5) Filtering List Comprehensions
◦ 10.6) Ternary Conditional Expressions

• 11) Summary

1) Introduction

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

1 of 28 7/28/2023, 1:21 PM

https://catsoop.org/
https://catsoop.org/
https://www.fsf.org/about/what-is-free-software
https://www.fsf.org/about/what-is-free-software
https://smatz.mit.edu/_util/license
https://smatz.mit.edu/_util/license
https://smatz.mit.edu/_util/source.zip
https://smatz.mit.edu/_util/source.zip
https://smatz.mit.edu/_util/jslicense.html
https://smatz.mit.edu/_util/jslicense.html
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://greenteapress.com/wp/think-python-2e/
http://greenteapress.com/wp/think-python-2e/
http://greenteapress.com/wp/think-python-2e/
http://www.allendowney.com/wp/
http://www.allendowney.com/wp/
https://smatz.mit.edu/_static/6s090/week7/readings/6s090_reading7.pdf
https://smatz.mit.edu/_static/6s090/week7/readings/6s090_reading7.pdf
https://smatz.mit.edu/6s090/week7/readings#_introduction
https://smatz.mit.edu/6s090/week7/readings#_introduction
https://smatz.mit.edu/6s090/week7/readings#_classes_and_instances
https://smatz.mit.edu/6s090/week7/readings#_classes_and_instances
https://smatz.mit.edu/6s090/week7/readings#_custom_classes_and_attributes
https://smatz.mit.edu/6s090/week7/readings#_custom_classes_and_attributes
https://smatz.mit.edu/6s090/week7/readings#_creating_instances_of_user_defined_classes
https://smatz.mit.edu/6s090/week7/readings#_creating_instances_of_user_defined_classes
https://smatz.mit.edu/6s090/week7/readings#_attributes
https://smatz.mit.edu/6s090/week7/readings#_attributes
https://smatz.mit.edu/6s090/week7/readings#_name_resolution
https://smatz.mit.edu/6s090/week7/readings#_name_resolution
https://smatz.mit.edu/6s090/week7/readings#_example_rectangles
https://smatz.mit.edu/6s090/week7/readings#_example_rectangles
https://smatz.mit.edu/6s090/week7/readings#_classes_and_functions
https://smatz.mit.edu/6s090/week7/readings#_classes_and_functions
https://smatz.mit.edu/6s090/week7/readings#_functions_that_modify_objects
https://smatz.mit.edu/6s090/week7/readings#_functions_that_modify_objects
https://smatz.mit.edu/6s090/week7/readings#_pure_functions
https://smatz.mit.edu/6s090/week7/readings#_pure_functions
https://smatz.mit.edu/6s090/week7/readings#_classes_and_methods
https://smatz.mit.edu/6s090/week7/readings#_classes_and_methods
https://smatz.mit.edu/6s090/week7/readings#_what_is_self
https://smatz.mit.edu/6s090/week7/readings#_what_is_self
https://smatz.mit.edu/6s090/week7/readings#_why_is_self_useful
https://smatz.mit.edu/6s090/week7/readings#_why_is_self_useful
https://smatz.mit.edu/6s090/week7/readings#_the_init_method
https://smatz.mit.edu/6s090/week7/readings#_the_init_method
https://smatz.mit.edu/6s090/week7/readings#_some_other_magic_methods
https://smatz.mit.edu/6s090/week7/readings#_some_other_magic_methods
https://smatz.mit.edu/6s090/week7/readings#_extra_goodies
https://smatz.mit.edu/6s090/week7/readings#_extra_goodies
https://smatz.mit.edu/6s090/week7/readings#_any_and_all
https://smatz.mit.edu/6s090/week7/readings#_any_and_all
https://smatz.mit.edu/6s090/week7/readings#_multiple_inline_comparisons
https://smatz.mit.edu/6s090/week7/readings#_multiple_inline_comparisons
https://smatz.mit.edu/6s090/week7/readings#_error_handling
https://smatz.mit.edu/6s090/week7/readings#_error_handling
https://smatz.mit.edu/6s090/week7/readings#_defining_functions_lambda_notation
https://smatz.mit.edu/6s090/week7/readings#_defining_functions_lambda_notation
https://smatz.mit.edu/6s090/week7/readings#_enumerate
https://smatz.mit.edu/6s090/week7/readings#_enumerate
https://smatz.mit.edu/6s090/week7/readings#_zip
https://smatz.mit.edu/6s090/week7/readings#_zip
https://smatz.mit.edu/6s090/week7/readings#_python_goodies_review
https://smatz.mit.edu/6s090/week7/readings#_python_goodies_review
https://smatz.mit.edu/6s090/week7/readings#_sequence_unpacking
https://smatz.mit.edu/6s090/week7/readings#_sequence_unpacking
https://smatz.mit.edu/6s090/week7/readings#_generating_graphs_with_matplotlib
https://smatz.mit.edu/6s090/week7/readings#_generating_graphs_with_matplotlib
https://smatz.mit.edu/6s090/week7/readings#_slicing
https://smatz.mit.edu/6s090/week7/readings#_slicing
https://smatz.mit.edu/6s090/week7/readings#_optional_arguments_to_functions
https://smatz.mit.edu/6s090/week7/readings#_optional_arguments_to_functions
https://smatz.mit.edu/6s090/week7/readings#_filtering_list_comprehensions
https://smatz.mit.edu/6s090/week7/readings#_filtering_list_comprehensions
https://smatz.mit.edu/6s090/week7/readings#_ternary_conditional_expressions
https://smatz.mit.edu/6s090/week7/readings#_ternary_conditional_expressions
https://smatz.mit.edu/6s090/week7/readings#_summary
https://smatz.mit.edu/6s090/week7/readings#_summary
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

Earlier in the course, we introduced the capability of function definition, which gave us the power to create functions that we
could then abstract and treat as though they had been "built in" to Python. In the same way that we could use the built-in
capabilities of, for example, addition or subtraction, we could create new variations on these operations and use them and treat
them as though they had been defined as part of Python.

Turns out we can do the same thing, not with procedures, but with data. Just like Python came with several built-in operations
and functions that we could then build on using function definition, Python also comes with several built-in data types (many of
which you have experience with by now): int , float , str , list , dict , and a few others. In this set of readings, we'll explore a
means for creating custom types of objects.

Then we'll take some time to explain a grab-bag of other Python features.

2) Classes and Instances

Way back in the first set of readings, we introduced objects as the main "things" that Python programs work with, and we noted
that each object has both a type and a value: an object's value determines the exact thing it represents, and its type determines
the kinds of things that programs can do to it (defines the set of valid operations on that type of object).

We will occasionally use different terminology: we can refer to an object's type as its class, and we can say that the object itself is
an instance of that class.

For example, int is a class, and some examples of instances of that class are: 478 , 1 , and 3 . Similarly, str is a class, and some
examples of instances of that class are: "sandwich" , "1234" , and "name" .

By virtue of being members of the same class of objects, we can operate on any string in exactly the same ways, regardless of
the particular value an instance represents; for example: we can concatenate strings, we can use len to compute their length,
we can loop over them with for , we can index into them to find the characters at particular locations within them, and we can
convert them to lowercase with x.lower() . Importantly, it is the object's type that determines the operations that are possible
when dealing with that object.

By creating our own types (or classes) of objects, we will be able to treat those custom data types as though they had been built
in to Python. Throughout this reading, it will be important to draw a distinction between creating a class of objects, and making
an instance of that class. When we talk about creating a class, we are talking about defining a whole new type of objects
(including both how they are represented internally, and also the operations that are possible for that class of objects); when we
talk about making an instance of a class, we are talking about making one particular object. For example, list is a class, and
when we type [1, 2, 3, 4] into Python, we are making an instance of that class.

3) Custom Classes and Attributes

So far we've talked about this pretty abstractly; let's actually create our first class. Let's imagine that we are writing a program to
perform some geometric calculations in 2-space.

In mathematical notation, points are often written in parentheses with a comma separating the coordinates. For example,
represents the origin, and represents the point units to the right and units up from the origin.

There are several ways we might represent points in Python:

• We could store the coordinates separately in two variables, x and y .
• We could store the coordinates as elements in a list or tuple.
• We could create a new type to represent points as objects.

In some ways, creating a new type is more complicated than the other options, but it has advantages that we will see soon.

(0, 0)
(x, y) x y

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

2 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

A programmer-defined type is also called a class, and is defined using (perhaps unsurprisingly) the class keyword. Our first
class definition looks like this:

class Point:

pass

Class definitions always start with the class keyword, followed by a name for the class (here, Point), followed by an indented
body. Class names are, by convention, capitalized.

For now, the body of this class definition is not particularly interesting: it consists of a single instruction to Python: pass (Python
speak for do nothing). You can define variables and functions inside a class definition, but we will get back to that later.

Executing this definition causes Python to do two things: first, it creates a class object to represent this class; and second, it binds
the name Point to this class object in the frame where the class was defined.

As always, we'll need a way to represent these new things in our environment diagrams. We'll represent class objects similarly to
how we represent frames or dictionaries, but with a note to indicate that they are indeed classes.

Evaluating the class definition above leaves us with the following environment diagram (notice that this statement both created
the class object and associated the name Point with it):

When the class object is created, Python will execute the class body within that environment. It is possible to define variables
within the class definition (typically, for things that are common to all instances of a class). For example, if we are only
considering points in 2-space, we could have instead written:

class Point:

using a short variable name to represent the number of

coordinates so I can fit it in the environment diagram

 n = 2

which would result in the following environment diagram:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

3 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

We can look up and/or modify attributes within a class using the same dot notation we used for modules. For example, we could
use the following:

print(Point.n)

To evaluate this expression, Python first looks up the name Point (finding the class object), and then it looks up the name n
inside that object, finding the integer 2 . We could also perform assignment using similar notation:

Point.n = 3 # replaces the variable n inside the class

3.1) Creating Instances of User-Defined Classes

The class object is like a factory for creating objects. To create a Point, you call Point as if it were a function.

blank = Point()

The return value is a reference to a Point object, which we assign to blank . Creating a new object is called instantiation, and the
object is an instance of the class.

We'll represent instances of user-defined classes in a similar fashion, except that we will label them as instances, and their parent
pointers point back to their associated class. So evaluating the line above would result in the following environment diagram:

3.2) Attributes

You can assign values to an instance of a user-defined class using dot notation, the same way you would assign them within a
class:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

4 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

blank.x = 3.0

blank.y = 4.0

This syntax is similar to the syntax for selecting a variable from a module, such as math.pi or string.whitespace . In this case,

though, we are assigning values to named elements of an object. These elements are called attributes1 or instance variables.

The following diagram shows the result of executing these statements:

The variable blank refers to a Point object, which contains two attributes. Each attribute refers to a floating-point number.

You can read the value of an attribute using the same syntax:

print(blank.y) # prints 4.0

x = blank.x

print(x) # prints 3.0

Like we saw above with classes, the expression blank.x means "look up the name blank in the current frame, and look up the
name x inside that object." In the example, we assign that value to a variable named x . There is no conflict between the variable
x and the attribute x (because one is defined in the global frame, but the other is defined inside the instance).

You can use dot notation as part of any expression. For example:

print('(', blank.x, ',', blank.y, ')') # prints (3.0 , 4.0)

import math

distance = math.sqrt(blank.x**2 + blank.y**2)

print(distance) # prints 5.0

3.2.1) Name Resolution

Notice that when we made our instance, we gave it a parent pointer to the class in which it was defined. With the syntax
blank.x , we looked up the value of the name x inside the instance we had created. But what happens if we try to look up a
name that does not exist?

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

5 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#catsoop_footnote_1
https://smatz.mit.edu/6s090/week7/readings#catsoop_footnote_1
https://smatz.mit.edu/6s090/week7/readings#catsoop_footnote_1
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

Try Now:

What happens when you look up blank.a? What about blank.n?

Show/Hide

Looking up blank.a gives a new type of error: an AttributeError , saying that this object has no
attribute a . Looking up blank.n , on the other hand, gives us 2 .

If Python is looking inside an object for an attribute and can't find it, it will look next in that object's class for that name. If it
doesn't find it there, it will give an AttributeError (note that it will not continue looking beyond the class; i.e., it will not look in
the global frame).

3.3) Example: Rectangles

Sometimes it is obvious what the attributes of an object should be, but other times you have to make decisions. For example,
imagine you are designing a class to represent rectangles. What attributes would you use to specify the location and size of a
rectangle? You can ignore angle; to keep things simple, assume that the rectangle is either vertical or horizontal.

There are at least two possibilities:

• You could specify one corner of the rectangle (or the center), the width, and the height.
• You could specify two opposing corners.

At this point it is hard to say whether either is better than the other, so we'll implement the first one, just as an example.

Here is the class definition:

class Rectangle:

pass

It doesn't look like much for now (because the body doesn't do anything).

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

6 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

Try Now:

Draw the environment diagram that results from executing this statement, assuming that all of the below code has
also been executed.

class Point:

 n = 2

blank = Point()

blank.x = 3.0

blank.y = 4.0

class Rectangle:

pass

Show/Hide

To represent a particular rectangle, you have to instantiate a Rectangle object and assign values to the attributes:

box = Rectangle()

box.width = 100.0

box.height = 200.0

box.corner = Point()

box.corner.x = 0.0

box.corner.y = 0.0

The expression box.corner.x means: "Go to the object box refers to and look up the attribute named corner ; then go to that

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

7 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

object and look up the attribute named x ."

Try Now:

Draw the environment diagram that results from executing the statements above.

Show/Hide

First, we create an instance of Rectangle and associated it with the name box in the global frame. Then
we associate attributes width and height inside this instance with values 100.0 and 200.0 ,
respectively. Finally, we make a new instance of Point , associate it with the name corner inside the
Rectangle instance, and associate attributes x and y in that (Point) instance with the values 0.0 and
0.0 , respectively.

It's starting to look a little like a bowl of spaghetti, but in the end, this results in the following diagram:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

8 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

Try Now:

Using the environment diagram above, predict what will print to the screen if we run each of the following:

print(box.width)

print(box.corner.x)

print(box.corner.n)

print(box.corner.box)

print(box.x)

Show/Hide

• The first will look up the name box in the global environment and then look up the name width
inside that object, finding 100.0 .

• The second will look up the name box in the global environment, look up the name corner
inside that object, and look up the name x inside that object, finding 0.0 .

• The third will look up the name box in the global environment, look up the name corner inside
that object, and look up the name n inside that object. It does not find n inside of that object, so
it looks inside its class (Point) and finds the value 2 .

• The fourth will not print anything, but will result in an error. Looking up box.corner finds the
Point instance we created. We try to look up the name box inside that object and find nothing,
so we look inside the class. In the class, we again don't find anything called box , so we give up
and return an error. Importantly, we don't look for the name box in the global environment.

• The last will also result in an error, because the name x does not exist in the instance referred to
by box , nor in its class (Rectangle).

4) Classes and Functions

We saw in the previous section that instances of user-defined classes can be treated like primitive objects. This means that we
can also make functions that operate on instances, or that return new instances.

Functions can return instances of user-defined classes. For example, find_center defined below takes a Rectangle as an
argument and returns a Point that contains the coordinates of the center of the Rectangle :

def find_center(rect):

 p = Point()

 p.x = rect.corner.x + rect.width/2

 p.y = rect.corner.y + rect.height/2

return p

Here is an example that passes box as an argument and assigns the resulting Point to center :

center = find_center(box)

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

9 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

def print_point(p):

print('(', p.x, ',', p.y, ')')

print_point(center) # prints (50 , 100)

4.1) Functions that Modify Objects

We saw in the previous sections that objects are mutable. You can change the state of an object by making an assignment to
one of its attributes. For example, to change the size of a rectangle without changing its position, you can modify the values of
width and height :

box.width = box.width + 50

box.height = box.height + 100

You can also write functions that modify objects. For example, grow_rectangle takes a Rectangle object and two numbers,
dwidth and dheight , and adds the numbers to the width and height of the rectangle:

def grow_rectangle(rect, dwidth, dheight):

 rect.width = rect.width + dwidth

 rect.height = rect.height + dheight

Here is an example that demonstrates the effect:

print(box.width, box.height) # prints 150.0 300.0

grow_rectangle(box, 50, 100)

print(box.width, box.height) # prints 200.0 400.0

So how did this come to be? It's going to be a bit messy, but let's take a look at the environment diagram:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

10 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

<< First Step < Previous Step Next Step > Last Step >>

STEP 1
Before we called grow_rectangle , we defined it in the global frame, resulting in the diagram above.

Try Now:

Write a function named move_rectangle that takes an instance of Rectangle and two numbers named dx and
dy . It should change the location of the rectangle by adding dx to the x coordinate of corner and adding dy to
the y coordinate of corner .

Show/Hide

Here is one solution:

def move_rectangle(rect, dx, dy):

 rect.corner.x = rect.corner.x + dx

 rect.corner.y = rect.corner.y + dy

4.2) Pure Functions

It is also possible to define pure functions involving instances (that is, functions that do not modify their arguments, but return a

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

11 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

new result).

For example, we could write a function like move_rectangle , but which creates a new instance representing the moved
rectangle, rather than mutating its input:

def shifted_rectangle(rect, dx, dy):

 new_rect = Rectangle() # make a new instance

height and width should be the same

 new_rect.width = rect.width

 new_rect.height = rect.height

the corner of the rectangle is different, however

 new_rect.corner = Point() # importantly, make a new instance of Point for the corner

 new_rect.corner.x = rect.corner.x + dx

 new_rect.corner.y = rect.corner.y + dy

return new_rect

5) Classes and Methods

In the previous section, we saw examples of functions that operate on instances we've created. Similarly, we could define some
new functions to define computations related to the Point class:

import math

def distance_to_origin(pt):

return (pt.x**2 + pt.y**2)**0.5

def euclidean_distance(pt1, pt2):

return ((pt1.x - pt2.x)**2 + (pt1.y - pt2.y)**2)**0.5

def manhattan_distance(pt1, pt2):

return abs(pt1.x - pt2.x) + abs(pt1.y - pt2.y)

def add_vectors(pt1, pt2):

 new_pt = Point()

 new_pt.x = pt1.x + pt2.x

 new_pt.y = pt1.y + pt2.y

return new_pt

def angle_between(pt1, pt2):

 vert = pt2.y - pt1.y

 horiz = pt2.x - pt1.x

return math.atan2(vert, horiz)

However, just from looking at a program written in that style, it is not obvious that there is any connection between the
functions we've defined, and the types of data they operate on. With some examination, however, it becomes apparent that all
of the operations above take at least one instance of Point as an argument.

This observation is the motivation for methods. A method is a function that is associated with a particular class. Methods are
semantically the same as functions, but there are two syntactic differences:

• Methods are defined inside a class definition in order to make the relationship between the class and the method explicit.

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

12 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

• The syntax for invoking a method is different from the syntax for calling a function.

Let's start by transforming one of these functions into a method. As a first step, all we have to do is to move the definition into
the class (notice the change in indentation):

class Point:

 n = 2

def distance_to_origin(pt):

return (pt.x**2 + pt.y**2)**0.5

Once we have defined distance_to_origin this way, we now have two ways to call it. The first might seem familiar: if we have
an instance p of point, we can look up the function with Point.distance_to_origin , and call it with p as an argument:

p = Point()

p.x = 3.0

p.y = 4.0

print(Point.distance_to_origin(p)) # prints 5.0

Using this notation, Python first looks up the name Point . It then looks up the name distance_to_origin inside that object,
and calls the resulting function with the instance p passed in as an argument.

It turns out that people very rarely call methods using this syntax. Rather, we tend to use a more concise notation for calling
methods:

print(p.distance_to_origin()) # also prints 5.0

This might seem weird! We defined distance_to_origin to take a single argument, but above, it seems not to be taking any! If
this seems strange, that's normal. What we have here is a bit of "syntactic sugar:" syntax to make a common operation
easier/sweeter to write.

In this slight shift of notation, distance_to_origin is still the name of the method we want to call, and its argument p is still
the object the function acts on. Behind the scenes, though, if a method is looked up from an instance instead of from a class,
Python will automatically insert that instance as the first argument to the method (so in this case the instance p is associated
with the name pt inside the method body).

Note: In fact, we have seen this syntax before! When we used append to add elements to the end of a list x , we did it by saying
x.append(elt) . But it turns out that we could also have done list.append(x, elt) .

By convention, the first parameter of a method is called self , so it would be more common to write distance_to_origin like
this:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

13 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

class Point:

 n = 2

def distance_to_origin(self):

return (self.x**2 + self.y**2)**0.5

The reason for this convention is an implicit metaphor:

• The syntax for a function call, distance_to_origin(pt) , suggests that the function is the active agent. It says something
like, "Hey distance_to_origin ! Here's a point I want you to calculate the distance for."

• In this new shift of perspective (often referred to as object-oriented programming), the objects are the active agents. A
method invocation like p.distance_to_origin says "Hey p ! Please tell me your own distance to the origin."

This change in perspective might be more polite, but it is not obvious that it is useful. In the examples we have seen so far, it
may not be. But sometimes shifting responsibility from the functions onto the objects makes it possible to write more versatile
functions (or methods), and makes it easier to maintain and reuse code.

5.1) What is self?

In this section, we'll expand a bit more on self (in Python, not philosophically!).

First, it's important to note that self is just a name, which is typically used as the first parameter to a method. This first
argument, regardless of what it is called, always denotes the instance that is currently being operated on.

If a method is looked up via a class, it is up to the programmer to provide the instance of that class that the method should act
on. If the method is looked up via an instance, however, Python will automatically insert that instance as the first argument to
the method (the argument typically called self).

Let's expand on the definition of Point from above to include one more method, and then invoking a couple of methods:

class Point:

 n = 2

def distance_to_origin(self):

return (self.x**2 + self.y**2)**0.5

def euclidean_distance(self, other):

return ((self.x - other.x)**2 + (self.y - other.y)**2)**0.5

p1 = Point()

p1.x = 3.0

p1.y = 4.0

p2 = Point()

p2.x = 7.0

p2.y = 8.0

print(p1.distance_to_origin())

print(p2.euclidean_distance(p1))

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

14 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

<< First Step < Previous Step Next Step > Last Step >>

STEP 1
After the class definition, we have the diagram above. Note that distance_to_origin and euclidean_distance
within the class object point to functions. Note also that these functions' parent pointers still point back to the
frame in which they were defined (here, the global frame), even though they were defined inside a class.

Try Now:

Modify the Point definition to convert the other functions from above (angle_between , manhattan_distance ,
add_vectors) to methods. How would you call these methods from an instance p of Point?

5.1.1) Why is self Useful?

One reason self is useful is because it allows us to access and modify attributes from within a method. Whereas variables
defined within a function are only accessible from that local frame, attributes defined inside of self will be accessible from
other method calls, and, indeed, from outside the object!

This is important for objects with values unique to a particular instance across function calls (such as the Point class with x and
y ; or the Rectangle class with corner , height , and width).

6) The __init__ Method

In the previous examples, it was kind of a pain to make new instances of the classes we've defined; we had to first make the
instance, and then bind new variables inside the resulting object.

The init method (short for "initialization") provides a means for easing this process. It is a special method that gets invoked when
an object is instantiated. Its full name is __init__ (two underscore characters, followed by init , and then two more
underscores). An init method for the Point class might look like this:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

15 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

class Point:

def __init__(self, x, y):

 self.x = x

 self.y = y

Once we have defined this method, we can create an instance like so:

mypoint = Point(2, 3)

If arguments are passed in when creating an instance of a class, Python will pass them to the class's __init__ method. In
particular, Python will do the following in response to the code above:

1. Create a new instance of Point and bind it to the name mypoint .
2. Run the __init__ method with mypoint passed in as the first argument (in the example above,

Point.__init__(mypoint, 2, 3)).
3. Inside of the body of the function, the name self refers to this new instance, so the function will store values 2 and 3 as

x and y , respectively, inside the instance (so that they are accessible from outside the function as mypoint.x and
mypoint.y).

It is common for the parameters of __init__ to have the same names as the attributes. The statement:

 self.x = x

stores the value of the parameter x as an attribute of self (the newly-created instance).

7) Some Other "Magic" Methods

Python also has a number of other "magic" methods, which are called automatically by Python in certain situations, and which
are typically denoted with a name surrounded by double-underscores. A more complete list is available here, but the following
are a few examples:

• __str__(self) should return a string; this method is called when the instance in question is printed, or when converting
to a string with the str function.

• __add__(self, other) is called when the + operator is used on two instances, allowing us to use the + operator on
instances of our custom classes.

• __mul__(self, other) is called when the * operator is used on two instances.

As an example, consider printing one of the Point instances. Python will try its best to print a useful summary of the object, but
the best it can do is something like:

p = Point(2, 3)

print(p) # prints: <__main__.Point object at 0x7f8d7fae9d68>

Not very helpful at all! But if we define a __str__ method first, we can get much nicer results:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

16 of 28 7/28/2023, 1:21 PM

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

class Point:

def __init__(self, x, y):

 self.x = x

 self.y = y

def __str__(self):

return "Point(" + str(self.x) + ", " + str(self.y) + ")"

p = Point(8, 4)

print(p) # prints: Point(8, 4)

Try Now:

Earlier on, when we were talking about different representations for points, we listed three possibilities:

• storing x and y separately as two variables,
• storing coordinates in a list or tuple, or
• creating a new type to represent points as objects.

What are the benefits and drawbacks of each of these representations?

Show/Hide

Any of these representations could, in fact, work fine, but the representation of a point using a class has
a number of nice features:

• It is easy to make multiple instances of the Point class, which would not be true of simply storing
the x and y coordinates separately.

• Creating the Point class allows us to associate a number of methods specific to points with the
objects themselves, rather than having them as separate stand-alone functions (which we would
need if we were representing points as lists or tuples).

8) Extra Goodies

Now we switch to explaining some extra Python features. Ironically, one of the goals for this course has been to teach you as
little Python as possible, in the sense that we wanted to focus on accurately modeling a small number of Python's features which
are not unique to Python, and to provide a foundation on which future pieces can be added with relative ease.

Now we will go back for some of the good, relatively Python-specific bits that got left behind. Python provides a lot of features
that are not really necessary (you can write good code to solve any problem without them), but with them you can sometimes
write code that's more concise, readable, or efficient. You may have already seen many of these. We will now take the time to
introduce them formally.

In this one section, there is not time to cover everything, but you will have plenty of time as you continue on with programming

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

17 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

to pick up more and more of these little pieces!

8.1) "any" and "all"

Python provides a built-in function, any , that takes a sequence of boolean values and returns True if any of the values are
True . It works on lists:

print(any([False, False, True])) # True

But it is often used with expressions like this:

print(any(letter == 't' for letter in 'monty')) # True

That example isn't very useful because it does the same thing as the in operator. But we could use any to rewrite more
complicated behaviors. For example, consider the following function:

def avoids(word, forbidden):

for letter in word:

if letter in forbidden:

return False

return True

We could have rewritten this function using any :

def avoids(word, forbidden):

return not any(letter in forbidden for letter in word)

The function almost reads like English: "word avoids forbidden if there are not any forbidden letters in word ."

Using any with a generator expression is efficient because it stops immediately if it finds a True value, so it doesn't have to
evaluate the whole sequence.

Python provides another built-in function, all , that returns True if every element of the sequence is True . For example:

print(all([False, False, True])) # False

nums = [2, 4, 6]

print(all(num % 2 == 0 for num in nums)) # True

8.2) Multiple Inline Comparisons

Earlier, we talked about Python's comparison operators (> , < , >= , <= , == , !=) as though they were binary operators, but it turns
out that these are actually -ary (that is, they can take more than 2 operands).

For example, we could write:

n

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

18 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

x < y < z

which will evaluate to True only if x is less than y and y is less than z . This also works for the other comparators (and even for
combinations of different comparators).

For example:

a == b == c # evaluates to True if a == b and b == c

a > b < c # evaluates to True if a > b and b < c

8.3) Error Handling

At some point when working on the exercises in this class, you may have encountered errors that were difficult to predict. In
these cases, it would be nice to have a way for Python to detect that an error (in Python speak, an exception because it is not
normal behavior) occurred, and to behave appropriately.

In some cases, rather than trying to predict errors, it is better to go ahead and try (and deal with problems if they happen), which
is exactly what the try statement does. The syntax is similar to an if ...else statement:

def safe_divide(x, y):

try:

return x / y # this could result in a 'divide by zero' error

except:

print("Error in division!")

return None

Python starts by executing the try body. If all goes well, it skips the except clause and proceeds. If an exception occurs, it
jumps out of the try clause and runs the except clause.

Handling an exception with a try statement is called "catching" an exception. In this example, the except clause prints an error
message that is not very helpful. In general, catching an exception gives you a chance to fix the problem, or try again, or at least
end the program gracefully (rather than with a spew of Python-related red text).

9) Defining Functions - Lambda Notation

We've seen one line if/else statements and one line for loops, so you may be wondering if there are other one-line short cuts?
Turns out the answer is yes! One "one-liner" that is sometimes useful is the lambda keyword, a convenient new way to define
functions.

The most common way to define functions in Python, which we've already seen, is via the def keyword. For example, earlier we
made a function that doubled its input, like so:

def double(x):

return 2*x

Recall that this will make a new function object in memory, and associate the name double with that object.

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

19 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

Python has another way of defining functions: the lambda keyword2. The below expression is also a function that doubles its
input:

lambda x: 2*x

The variable name(s) before the colon, here just x , are the names of the arguments. The expression after the colon is what the
function will return.

This function is almost exactly the same as double , except that it does not have a name.

We could have used a lambda instead of a def when creating the response for double from above:

def response(f, lo, hi, step):

 out = []

 i = lo

while i <= hi:

 out.append(f(i)) # here, we apply the provided function to i

 i += step

return out

double_out = response(lambda x: 2*x, 0, 1, 0.1)

If we did not care about being able to access double outside of computing its response, it might make sense to do this. This is
the same as passing a function in as the first argument to response ; the function is just being defined with lambda instead of
with def .

We could do the same to get the response for square :

square_out = response(lambda x: x**2, 0, 1, 0.1)

And we could have defined add_n as follows:

def add_n(n):

return lambda x: x+n

You can also define functions of more than one argument using lambdas. Both of the below pieces of code define multiply to
be a function which returns the multiplication of its two inputs, for example:

def multiply(a, b):

return a*b

multiply = lambda a, b: a*b

You should know that lambda , while sometimes a nice convenience, is never necessary—you can always use def instead!

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

20 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#catsoop_footnote_2
https://smatz.mit.edu/6s090/week7/readings#catsoop_footnote_2
https://smatz.mit.edu/6s090/week7/readings#catsoop_footnote_2
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

Similar to the list comprehension syntax we'll explore below in section 6, the lambda syntax is less explicit about what Python is
doing than its def counterpart, and it's harder to debug since it cannot include print statements. As such, use it sparingly, and
only when the function body is simple (e.g., a one-line return statement).

9.1) Enumerate

Have you ever wanted to both index and get the element from a list? Well Python has an enumerate function that will do just

that.3

seasons = ['Spring', 'Summer', 'Fall', 'Winter']

for i in range(len(seasons)):

 season = seasons[i]

 print(i, season)

can be written more succinctly with enumerate:

for i, season in enumerate(seasons):

 print(i, season)

print(list(enumerate(seasons)))

[(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]

enumerate can take any iterable as an argument (anything that can be looped over!)

9.2) Zip

Have you ever wanted to get the corresponding elements from separate lists? Well Python's zip function that will do just that.

first = ['Tim', 'Duane', 'Hope', 'Jeff']

last = ['Beaver', 'Boning', 'Dargan',]

smaller = min(len(first), len(last))

for i in range(smaller):

 fname = first[i]

 lname = last[i]

 print(fname, lname)

with zip:

for fname, lname in zip(first, last):

 print(fname, lname)

print(list(zip(first, last))) # [('Tim', 'Beaver'), ('Duane', 'Boning'), ('Hope', 'Dargan')]

zip will take any number of iterable (loopable) arguments and produce tuples of the corresponding elements in order (cutting
off at the end of the shortest argument). You can read more about zip and other built-in functions by reviewing Python's
documentation here.

10) Python Goodies Review

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

21 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#catsoop_footnote_3
https://smatz.mit.edu/6s090/week7/readings#catsoop_footnote_3
https://smatz.mit.edu/6s090/week7/readings#catsoop_footnote_3
https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#zip
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

While prior readings have covered these topics, the following sections offer some review that may be helpful:

10.1) Sequence Unpacking

It is often useful to swap the values of two variables. With conventional assignments, you have to use a temporary variable. For
example, to swap a and b :

temp = a

a = b

b = temp

This solution is cumbersome; tuple assignment is more elegant:

a, b = b, a

The left side is a tuple of variables; the right side is a tuple of expressions. Each value is assigned to its respective variable. All the
expressions on the right side are evaluated before any of the assignments.

The number of variables on the left and the number of values on the right have to be the same:

a, b = 1, 2, 3 # this produces: ValueError: too many values to unpack

This error message might seem weird, but this idea of assigning each element in a sequence to a different variable name is often
referred to as unpacking that sequence.

For example, consider the following three pieces of code to compute the distance between points (where points are represented
as (x, y) tuples.

def distance(pt1, pt2):

return ((pt1[0] - pt2[0])**2 + (pt1[1] - pt2[1])**2)**0.5

def distance(pt1, pt2):

 x1 = pt1[0]

 y1 = pt1[1]

 x2 = pt2[0]

 y2 = pt2[1]

return ((x1 - x2)**2 + (y1 - y2)**2)**0.5

def distance(pt1, pt2):

 x1, y1 = pt1

 x2, y2 = pt2

return ((x1 - x2)**2 + (y1 - y2)**2)**0.5

The first function definition is nice and to-the-point, but it is a bit hard to read because the indexing operations are all collapsed
together with the mathematical operation to compute the distance. The second makes the last line easier to read, but at the
expense of having to write 4 extra lines of code. The last, I think, strikes a nice balance between the two.

More generally, the right side can be any kind of sequence (string, list or tuple). For example, to split an email address into its

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

22 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

username and domain name, we could do:

address = 'a_clever_username@mit.edu'

uname, domain = address.split('@')

The return value from split is a list with two elements; the first element is assigned to uname , the second to domain .

print(uname) # prints a_clever_username

print(domain) # prints mit.edu

10.2) Generating Graphs with matplotlib

The matplotlib.pyplot module provides a number of useful functions for creating plots with Python. In this section we'll go
over a few examples of how to generate different plots.

To import the pyplot module, add the following to the top of your script:

import matplotlib.pyplot as plt

Once you have done so, you can make a new plot by calling plt.figure() with no arguments. After that, you can use various
functions to add data to the figures. When you are ready, calling the plt.show() function with no arguments will cause
matplotlib to open windows displaying the resulting graphs. You can also add a legend and/or a title to the plot, as well as
labels to the axes, as shown in the example below.

The following code will cause four windows to be displayed. Try running the code below on your own machine to see the results.
Notice that the plt.show() function does not return until the plotting windows are closed.

import matplotlib.pyplot as plt

here we plot a set of "y" values only; these are associated automatically

with integer "x" values starting with 0.

plt.figure()

plt.plot([9, 4, 7, 6])

if given two arguments, the first list/array will be used as the "x" values,

and the second as the associated "y" values

plt.figure()

plt.plot([10, 9, 8, 7], [1, 2, 3, 4])

plt.grid() # this adds a background grid to the plot

we can also create scatter plots. scatter plots require both "x" and "y"

values.

plt.figure()

plt.scatter([10,25, 37, 42], [12, 28, 5, 37])

multiple calls to plt.plot or plt.scatter will operate on the same axes

plt.figure()

plt.scatter([10, 25, 37, 42], [12, 28, 5, 37], label='scatter')

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

23 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

plt.plot([10, 40], [5, 20], 'r', label='a line') # the 'r' means 'red'

plt.plot([5, 9, 15, 30], [10, 20, 30, 35], 'k', label='more data')

plt.title('A more complete example')

plt.xlabel('A label for x')

plt.ylabel('The vertical axis')

plt.legend()

finally, display the results

print('Showing Graphs')

plt.show()

print('Done')

10.3) Slicing

You've seen before that it's possible to "index into" sequences (strings, lists, tuples) to extract particular values from them. It is
also possible to select a segment (called a slice) of the sequence using a similar syntax.

Consider the following example using strings:

fruit = 'banana'

print(fruit[0:4]) # prints bana

print(fruit[2:4]) # prints na

The slicing operator [start:stop] returns the part of the string from the -indexed character to the -index
character, including the first but excluding the last.

If you omit the first index (before the colon), the slice starts at the beginning of the string. If you omit the second index, the slice
goes to the end of the string:

print(fruit[:3]) # prints ban

print(fruit[3:]) # prints ana

If the first index is greater than or equal to the second the result is an empty string, represented by two quotation marks:

print(fruit[3:3]) # this results in the empty string `''`

An empty string contains no characters and has length 0, but other than that, it is the same as any other string.

Continuing this example, what do you think fruit[:] means? Try it and see.

The slicing operator (similarly to the range function) also takes an optional third argument (commonly referred to as step),
which specifies how many characters to 'skip' on each step. If it is not specified, this value defaults to 1 .

In its full form, this operator looks like [start:stop:step] . For example:

startth stop

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

24 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

print(fruit[::2]) # bnn

print(fruit[0:4:3]) # ba

print(fruit[1::3]) # an

These numbers can sometimes be a bit confusing; it helps to think about this operator in terms of how it would be defined as a
function:

def slice(string, start, stop, step):

 out = ''

 index = start

while index < stop:

 out += string[index]

 index += step

return out

Notice that step can be negative, which gives us an easy way to make a reversed version of a given sequence:

print(fruit[::-1])

The slice operator also works on lists:

t = ['a', 'b', 'c', 'd', 'e', 'f']

print(t[1:3]) # ['b', 'c']

print(t[:4]) # ['a', 'b', 'c', 'd']

print(t[3:]) # ['d', 'e', 'f']

If you omit the first index, the slice starts at the beginning. If you omit the second, the slice goes to the end. So if you omit both,
the slice is a copy of the whole list.

print(t[:]) # ['a', 'b', 'c', 'd', 'e', 'f'] (but this is a DIFFERENT list containing the same elements)

Since lists are mutable, it can sometimes be useful to make a copy before performing operations that modify lists.

A slice operator on the left side of an assignment can update multiple elements:

t = ['a', 'b', 'c', 'd', 'e', 'f']

t[1:3] = ['x', 'y']

print(t) # ['a', 'x', 'y', 'd', 'e', 'f']

10.4) Optional Arguments to Functions

When defining a function, one sometimes want to be able to call the function with a particular argument, but also without it. For
this, there are optional arguments. Consider this example:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

25 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

def approximately_equal(x, y, threshold=0.1):

return abs(x - y) <= threshold

If threshold is specified (e.g., approximately_equal(x, y, 1e-6)), then that value will be used for threshold (in this case,
). If not (e.g., approximately_equal(x, y)), then the default value (0.1) will be used for threshold .

In other words, if we provide the optional argument, it overrides the default value.

If a function has both required and optional parameters, all the required parameters have to come first, followed by the optional
ones.

There is a small caveat here (and often a big source of bugs): default values are evaluated at the time the function is defined, not
when the function is called. So we have to be careful when using a mutable object as a default value for a parameter; if we do
this, all calls to the function will use that same object (which may have been modified by previous calls).

10.5) Filtering List Comprehensions

Earlier, we saw how to use the concise list comprehension syntax to create a list based on another sequence. List
comprehensions can also be used for filtering.

For example, if we had a list and we wanted to find the squares of the odd numbers in that list, we could do:

def squared_odd_numbers(input_list):

 out = []

for i in input_list:

if i % 2 == 1: # if i is odd

 out.append(i ** 2)

return out

or, using a list comprehension:

def squared_odd_numbers(input_list):

return [i**2 for i in input_list if i % 2 == 1]

This functions selects only the elements from input_list that are odd, squares them, and returns a new list containing the
result.

10.6) Ternary Conditional Expressions

You may want to set a variable to one thing if a certain condition is true, and another otherwise:

if my_condition:

 x = a

else:

 x = b

This is a lot of lines for a simple task. It turns out you can write the above like so:

10−6

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

26 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week5/readings#_list_comprehensions
https://smatz.mit.edu/6s090/week5/readings#_list_comprehensions
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

x = a if my_condition else b

The expression on the right hand side evaluates to a if my_condition is True ; otherwise, it evaluates to b . The overall
statement is an assignment statement, so that a or b is assigned to the variable x .

11) Summary

In this set of readings, we first learned about a powerful new feature of Python: classes, which allowed us to define new types of
Python objects. Just as functions allowed us to abstract away details of particular operations and treat them as though they had
been built in to Python, classes let us abstract away details of particular data types and treat them as though they were built in
to Python.

Then we also shared a bunch of concise syntax features of Python.

Next Exercise: Things

Back to exercises

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

27 of 28 7/28/2023, 1:21 PM

https://smatz.mit.edu/6s090/week7/things
https://smatz.mit.edu/6s090/week7/things
https://smatz.mit.edu/6s090/week7
https://smatz.mit.edu/6s090/week7
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

Footnotes

1 As a noun, "AT-trib-ute" is pronounced with emphasis on the first syllable, as opposed to "a-TRIB-ute", which is a verb.

2 This may seem like a bizarre name, but it comes from a mathematical system for expressing computation, called the Lambda
calculus.

3 The example below comes from Python's official documentation for enumerate

Back to Top

6.s090 https://smatz.mit.edu/6s090/week7/readings

28 of 28 7/28/2023, 1:21 PM

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus
https://docs.python.org/3/library/functions.html#enumerate%3C%3E
https://docs.python.org/3/library/functions.html#enumerate%3C%3E
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090/week7/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

