
Readings for Unit 5
The questions below are due on Friday July 21, 2023; 10:00:00 PM.

Licensing Information

The readings for 6.s090 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. You are free to make and share verbatim copies (or modified versions) under the terms of that license.

Portions of these readings were modified or copied verbatim from the very nice book Think Python 2e by Allen Downey.

PDF of these readings also available to download: 6s090_reading5.pdf

Table of Contents

• 1) Introduction
• 2) More Examples

◦ 2.1) Calling Functions From Within Functions, Shadowing Globals
◦ 2.2) Defining a Function Within a Function
◦ 2.3) A Reminder

• 3) Functions Are First-Class
◦ 3.1) Functions as Arguments
◦ 3.2) Function-ception and Returning Functions
◦ 3.3) More Environment Diagrams

• 4) Understanding the Mystery Program
◦ 4.1) Closures
◦ 4.2) Fixing the Mystery Code

• 5) A Note About Aliasing
• 6) Default and Keyword Arguments
• 7) Assert statements
• 8) Generating Graphs with matplotlib
• 9) Summary

1) Introduction

As we have learned throughout the course, functions allow us to abstract away the details of a particular computation so that it
can be computed multiple times on different inputs. This week's readings will, first, revisit the details of how Python interprets
functions with two more examples. In particular, we'll focus on the issue of scoping (deciding how and where Python looks up
variable names). Then, we'll discuss the "first-class" nature of Python functions. Finally, we'll introduce some snazzy new syntax.

2) More Examples

To begin, we will step through two complex function examples with environment diagrams. These both build upon the things we
learned in unit 4's reading, so you may wish to review those now.

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

1 of 17 7/14/2023, 1:08 PM

https://catsoop.org/
https://catsoop.org/
https://www.fsf.org/about/what-is-free-software
https://www.fsf.org/about/what-is-free-software
https://smatz.mit.edu/_util/license
https://smatz.mit.edu/_util/license
https://smatz.mit.edu/_util/source.zip
https://smatz.mit.edu/_util/source.zip
https://smatz.mit.edu/_util/jslicense.html
https://smatz.mit.edu/_util/jslicense.html
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://greenteapress.com/wp/think-python-2e/
http://greenteapress.com/wp/think-python-2e/
http://greenteapress.com/wp/think-python-2e/
http://www.allendowney.com/wp/
http://www.allendowney.com/wp/
https://smatz.mit.edu/_static/6s090/week5/readings/6s090_reading5.pdf
https://smatz.mit.edu/_static/6s090/week5/readings/6s090_reading5.pdf
https://smatz.mit.edu/6s090/week5/readings#_introduction
https://smatz.mit.edu/6s090/week5/readings#_introduction
https://smatz.mit.edu/6s090/week5/readings#_more_examples
https://smatz.mit.edu/6s090/week5/readings#_more_examples
https://smatz.mit.edu/6s090/week5/readings#_calling_functions_from_within_functions_shadowing_globals
https://smatz.mit.edu/6s090/week5/readings#_calling_functions_from_within_functions_shadowing_globals
https://smatz.mit.edu/6s090/week5/readings#_defining_a_function_within_a_function
https://smatz.mit.edu/6s090/week5/readings#_defining_a_function_within_a_function
https://smatz.mit.edu/6s090/week5/readings#_a_reminder
https://smatz.mit.edu/6s090/week5/readings#_a_reminder
https://smatz.mit.edu/6s090/week5/readings#_functions_are_first_class
https://smatz.mit.edu/6s090/week5/readings#_functions_are_first_class
https://smatz.mit.edu/6s090/week5/readings#_functions_as_arguments
https://smatz.mit.edu/6s090/week5/readings#_functions_as_arguments
https://smatz.mit.edu/6s090/week5/readings#_function_ception_and_returning_functions
https://smatz.mit.edu/6s090/week5/readings#_function_ception_and_returning_functions
https://smatz.mit.edu/6s090/week5/readings#_more_environment_diagrams
https://smatz.mit.edu/6s090/week5/readings#_more_environment_diagrams
https://smatz.mit.edu/6s090/week5/readings#_understanding_the_mystery_program
https://smatz.mit.edu/6s090/week5/readings#_understanding_the_mystery_program
https://smatz.mit.edu/6s090/week5/readings#_closures
https://smatz.mit.edu/6s090/week5/readings#_closures
https://smatz.mit.edu/6s090/week5/readings#_fixing_the_mystery_code
https://smatz.mit.edu/6s090/week5/readings#_fixing_the_mystery_code
https://smatz.mit.edu/6s090/week5/readings#_a_note_about_aliasing
https://smatz.mit.edu/6s090/week5/readings#_a_note_about_aliasing
https://smatz.mit.edu/6s090/week5/readings#_default_and_keyword_arguments
https://smatz.mit.edu/6s090/week5/readings#_default_and_keyword_arguments
https://smatz.mit.edu/6s090/week5/readings#_assert_statements
https://smatz.mit.edu/6s090/week5/readings#_assert_statements
https://smatz.mit.edu/6s090/week5/readings#_generating_graphs_with_matplotlib
https://smatz.mit.edu/6s090/week5/readings#_generating_graphs_with_matplotlib
https://smatz.mit.edu/6s090/week5/readings#_summary
https://smatz.mit.edu/6s090/week5/readings#_summary
https://smatz.mit.edu/6s090/week4/readings
https://smatz.mit.edu/6s090/week4/readings
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

2.1) Calling Functions From Within Functions, Shadowing Globals

First, let's walk through the following piece of (admittedly silly) code:

def f(x):

 x = x + y

print(x)

return x

def g(y):

 y = 17

return f(x+2)

x = 3

y = 4

z = f(6)

a = g(y)

print(z)

print(a)

print(x)

print(y)

Try to use an environment diagram to predict what values will be printed to the screen as this program runs. You can step
through our explanation of how this code runs using the buttons below:

<< First Step < Previous Step Next Step > Last Step >>

STEP 13

This is our final diagram, where the return value from the call to g is associated with the name a in the global
frame.

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

2 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

After executing all of the previous steps, we enter a sequence of print statements. By now, we have printed 10 and
9 already. Now we print z , a , x , and y , which have values 10 , 9 , 3 , and 4 , respectively. So all-in-all, we will have
printed the following:

10

9

10

9

3

4

2.2) Defining a Function Within a Function

As another example, let's walk through the following piece of code. This piece of code demonstrates a new idea: because
function bodies can contain arbitrary code, they can also include other function definitions! Consider the following code:

x = 7

a = 2

def foo(x):

def bar(y):

return x + y + a

 z = bar(x)

return z

print(foo(14))

print(foo(27))

Try to use an environment diagram to predict what values will be printed to the screen as this program runs. You can step
through our explanation of how this code runs using the buttons below:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

3 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

<< First Step < Previous Step Next Step > Last Step >>

STEP 16
In the process of cleaning up the frame, several values are left with no references to them. These are garbage
collected, and then Python exits (because it is finished running the program!)

2.3) A Reminder

If you find these diagrams tedious, we get it... In the end, there's a reason we want computers to be the one doing this, after all;
they're much better at these operations than we are, and much faster! So, in the short term, this is tedious. But the long-term
benefits are really great! This kind of practice is helpful in building up a mental model of Python's behavior, which is important
so that when you encounter unexpected behavior, you can come back to the model. With practice, this kind of thinking will
become second nature, and you won't have to draw these diagrams out in such detail.

To motivate why environment diagrams might be useful, let's look at another example of a mystery Python program:

1 functions = []

2 for i in range(5):

3 def func(x):

4 return x + i

5 functions.append(func)

6
7 for f in functions:

8 print(f(12))

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

4 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

Without running this code, take a few moments to predict what is going to happen when it is run. Which of the
following do you think is going to happen?

(you will not be graded on correctness for this question, just go ahead and mark your best guess)

It prints 12 , then 13 , then , then 16

It prints 13 , then 14 , then , then 17

It prints 16 , then 15 , then , then 12

It prints 17 , then 16 , then , then 13

A Python error occurs

Something else

Save Submit View Answer

As staff, you are always allowed to submit. If you were a student, you would see the following:
You have infinitely many submissions remaining.

Now, only once you have made an educated guess above, type this code into your favorite text editor or IDE and run it. Does the
result match your expectation? By the end of this reading, we will learn ways to use functions that can 'fix' this program.

3) Functions Are First-Class

We now shift gears to learn about a powerful feature of Python: that it treats functions as first-class objects, which means that
functions in Python can be manipulated in many of the same ways that other objects can be (specifically, they can be passed as
arguments to other functions, defined inside of other functions, returned from other functions, and assigned to variables). In this
section, we will explore how we can make use of this feature in our programs.

3.1) Functions as Arguments

Imagine that you wanted to make plots of several different functions. To do that, you would need to figure out which "y" values
correspond to each of a number of "x" values. The following code computes these "y" values for different functions:

import math

def sine_response(lo, hi, step):

 out = [] # list of "y" values

 i = lo

while i <= hi:

 out.append(math.sin(i)) # compute "y" value

 i += step # move to next "x" value

return out

def cosine_response(lo, hi, step):

 out = []

 i = lo

while i <= hi:

 out.append(math.cos(i))

 i += step

return out

…

…

…

…

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

5 of 17 7/14/2023, 1:08 PM

http://en.wikipedia.org/wiki/First-class_function
http://en.wikipedia.org/wiki/First-class_function
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

def double(x):

return 2*x

def double_response(lo, hi, step):

 out = []

 i = lo

while i <= hi:

 out.append(double(i))

 i += step

return out

def square_response(lo, hi, step):

 out = []

 i = lo

while i <= hi:

 out.append(i**2)

 i += step

return out

Now imagine that you wanted the response function to return two lists, one to represent the input values, and one to represent
the output values. Making this change or changing anything at all about the functions' behaviors, would be a pain, because you
would have to manually change each of the above functions. However, we can fix this by making a general function called
response , which takes a function f as input and returns the list of f 's outputs over the specified range:

def response(f, lo, hi, step):

 out = []

 i = lo

while i <= hi:

 out.append(f(i)) # here, we apply the provided function to i

 i += step

return out

Notice that, inside of the definition of response , we call f , the function that was passed in as an argument. Using response , we
could compute the response of our double function from earlier:

These two compute the same response!

out = double_reponse(0, 1, 0.1)

out = response(double, 0, 1, 0.1)

When we pass in double as an argument, we do not put parentheses after it. This is because we want to refer to the function
itself (which is called double), and not to any particular output of the function (which we'd get by calling it, such as in
double(7)).

Note that we could compute responses for all of the functions described above using this new response function:

sine_out = response(math.sin, 0, 1, 0.1)

cosine_out = response(math.cos, 0, 1, 0.1)

double_out = response(double, 0, 1, 0.1)

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

6 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

def square(x):

return x**2

square_out = response(square, 0, 1, 0.1)

3.2) Function-ception and Returning Functions

Another useful feature is that functions can not only be passed in as arguments to functions, they can also be returned as the
result of calling other functions! Imagine that we had the following functions, each designed to add a different number to its
input:

def add1(x):

return x+1

def add2(x):

return x+2

If we wanted to make a whole lot of these kinds of functions (add3 , add4 , add5 , ...), it would be nice to have an automated way
of making them, rather than defining each new function by hand. We can do this in Python with:

def add_n(n):

def inner(x):

return x + n

return inner

This may be a little difficult to understand at first, but what is happening is this: when add_n is called, it will make a new function
(here, called inner) using the def keyword, and it will then return this function.

Here is an example of the use of this function (including using it to recreate add1 and add2 from above:

add1 = add_n(1)

add2 = add_n(2)

print(add2(3)) # prints 5

print(add1(7)) # prints 8

print(add_n(8)(9)) # prints 17

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

7 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

Try Now:

What type is each of the following values?

• add_n

• add_n(7)

• add_n(9)(2)

• add_n(0.2)(3)

• add_n(0.8)(2)

Show/Hide

• add_n is a function , as with other examples we saw before.
• add_n(7) is the result of calling add_n with 7 as its argument, which will also be a function .
• add_n(9)(2) calls add_n with an argument of 9 , and then it calls the result with an argument of

2 . This yields 11 , an int .
• add_n(0.2)(3) yields 3.2 , a float .
• add_n(0.8)(2) yields 2.8 , a float .

3.3) More Environment Diagrams

The examples above may be a little bit surprising, but we can understand them by working through them using an environment
diagram (and even if they aren't surprising, it's important to know exactly what Python is doing under the hood.) Here, we'll look
at simulating a piece of the above code using an environment diagram:

def add_n(n):

def inner(x):

return x + n

return inner

add1 = add_n(1)

add2 = add_n(2)

print(add2(3))

print(add1(7))

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

8 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

<< First Step < Previous Step Next Step > Last Step >>

STEP 15
Here we see the results of cleaning up the most recent frame. Note that, because there are no more references to
them, the 7 and 8 objects are garbage collected. At this point, we have reached the end of the program, so Python
will exit.

4) Understanding the Mystery Program

Earlier, we looked at the following piece of code as an example of code that is difficult to understand:

1 functions = []

2 for i in range(5):

3 def func(x):

4 return x + i

5 functions.append(func)

6
7 for f in functions:

8 print(f(12))

It is somewhat surprising that, despite the looping structure here, when we run this code, we see five 16 's printed to the screen!
Despite the surprising nature of this example, though, we now have all of the tools we need in order to make sense of this
example and to understand why it behaves the way it does. We'll walk through an environment diagram to explain this behavior,
and you're strongly encouraged to follow along (and to reach out for help if any of the steps are unclear!).

We'll start by drawing the diagram just for the first segment of the code (lines 1-5, where we are building up the functions list).
Again, we encourage you to try to stay one step ahead of the drawings below (that is, try to draw out how things will change
during each step, then click ahead and compare your work against our diagram).

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

9 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

<< First Step < Previous Step Next Step > Last Step >>

STEP 16
Looking up x inside of F1, we find the 12 that is bound locally. But i is not bound locally. So what do we do? We
follow the parent pointer, and we do find the name i in the global frame. It references a value of 4 for i , so that's
what we'll use.

Then we add those two values together to get a new int object representing 16 , which we return.

We'll stop here with the diagram, but note that this result would have been the same regardless of which of these
function objects we called. None of them remembers the value that i held when it was created; they all simply say
to look up the current value of i and add it to their inputs! So as we continue to loop and call each of these
function objects in turn, they all produce the same output!

4.1) Closures

Now that we've explained the interesting phenomenon from the mystery program, we'd like to try to "fix" it (presumably, the
person who wrote that code did not intend to see five 16 's, but rather some number that is changing, i.e., the intent was
probably to create five noticeably different functions: one that adds 0 to its input, one that adds 1 to its input, one that adds 2
to its input, and so on...). Before we can get there, though, we're going to introduce one more bit of terminology. This section is
not about introducing a new rule for how function objects behave (we've already covered all of them, in fact!) but rather a
powerful effect of those rules.

Importantly, a function object "remembers" the frame in which it was defined (its enclosing frame), so that later, when the
function is being called, it has access to the variables defined in that frame and can reference them from within its own body.
We call this combination of a function and its enclosing frame a closure, and it turns out to be a really useful structure,
particularly when we define functions inside the bodies of other functions (like the add_n example from above.)

4.2) Fixing the Mystery Code

Using this idea of a closure, we can fix the mystery code from earlier! The code below resolves the issue (at least insofar as
preventing the output from all of the functions from being identical!) by evaluating i each time through the loop and setting up
a closure for each of the functions we add to the functions list, such that, when each is called, it has access to a variable storing
the value that i had when that function was created.

1 def add_n(n):

2 def inner(x):

3 return x + n

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

10 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

4 return inner

5
6 functions = []

7 for i in range(5):

8 functions.append(add_n(i))

9
10 for f in functions:

11 print(f(12))

When this program is run, what will its output be?

Submit View Answer

As staff, you are always allowed to submit. If you were a student, you would see the following:
You have infinitely many submissions remaining.

5) A Note About Aliasing

Aliasing is good! Except when it's not. Be careful of when you want aliases and when you don't.

With multiple frames, aliasing can be trickier to notice (aliases might be in different environments!)

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

11 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

Try Now:

Consider the example below:

def double(nums):

Given a list of numbers, make a new list that doubles each number

for i in range(len(nums)):

 nums[i] = nums[i] * 2

return nums

global_nums = [1, 2, 3, 4]

print(double(global_nums))

print(global_nums)

What will this code output? Why?

Show/Hide

[2, 4, 6, 8]

[2, 4, 6, 8]

This may be unexpected that the global_nums changed, but with an environment diagram we can see
that the nums variable inside the double function aliases the global_nums list. When we mutate the
nums list by reassigning each index, we mutate global_nums as well.

To fix this, we need to create a new list as follows:

def double(nums):

Given a list of numbers, make a new list that doubles each number

 new_nums = []

for i in range(len(nums)):

 new_nums.append(nums[i] * 2)

return new_nums

global_nums = [1, 2, 3, 4]

print(double(global_nums)) # [2, 4, 6, 8]

print(global_nums) # [1, 2, 3, 4]

Now because we create new_nums in the local frame, every time we call double a new list is created and
modified, and we only use the input nums as a reference without modifying it.

6) Default and Keyword Arguments

For functions we've seen so far, we indicate the arguments by positions. For example, with this function:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

12 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

def divide_twice(a, b):

return (a/b)/b

When we call divide_twice(12,2) , python knows that a should be 12 and b should be 2 because that's the order we defined
the arguments to come in.

However, there is another way to pass in arguments, using the name instead of the position. For example, we write the
argument name, an equal sign, and the value we want it to take on.

divide_twice(b = 2, a = 12) # this would still be 3

Finally, there's a way to specify a function to have optional arguments. We signify these arguments with a variable name as
usual, but we also add an equal sign and a default value. For example, if we wanted our function to have the option of printing
the result before returning, we could add the optional argument print_result .

def divide_twice(a, b, print_result=False):

 answer = (a/b)/b

if print_result:

print(answer)

return answer

Now we can still call divide_twice like we did before. If we don't specify a value for print_result it will be False by default
as we indicated in the function definition.

divide_twice(12, 2) # prints nothing since print_result is False

But we can also specify a value for print_result . For example:

divide_twice(12, 2, True) # this will print 3 since print_result is now True.

It's common practice to use keyword specification for optional arguments because if there are multiple default arguments, it's
not immediately clear which ones are being set. For example, we could explicitly show that print_result is a default argument
being set to True as such:

divide_twice(12, 2, print_result=True)

7) Assert statements

So far, we have debugged and tested our programs mainly with print statements. However, Python comes with additional tools
to help us test whether our code actually does what we intend.

Assert statements check a conditional statement. If the statement evaluates to True, the program continues as normal, but if it
evaluates to False an AssertionError will be raised and stop the program.

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

13 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

>>> assert 5 > 4 # evaluates to True, does nothing

>>> assert 5 < 4

...

AssertionError

For example, we could test the add_s function below with assert statements with the following code:

def add_s(words):

return [word + "s" for word in words]

if __name__ == '__main__':

assert add_s(['can', 'add', 's']) == ['cans', 'adds', 'ss']

assert add_s(['']) == ['s']

assert add_s([]) == []

print("done testing")

While this program only prints done testing , it also silently checks that the output matches what we expect, saving us from the
hassle of manually checking whether the printed output is correct or not.

We can also use assert statements within functions to check that the input is valid:

def square(num):

assert type(num) == float or type(num) == int, f"Expected float or int, got {num} which is of

{type(num)}."

return num ** 2

print(square(5))

print(square("uh oh"))

Outputs:

25

...

AssertionError: Expected float or int, got uh oh which is of <class 'str'>.

Assert statements can slow down programs slightly but are generally good practice, especially for testing and debugging.

8) Generating Graphs with matplotlib

The matplotlib.pyplot module provides a number of useful functions for creating plots with Python. In this section we'll go
over a few examples of how to generate different plots.

To import the pyplot module, add the following to the top of your script:

import matplotlib.pyplot as plt

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

14 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

Once you have done so, you can make a new plot by calling plt.figure() with no arguments. After that, you can use various
functions to add data to the figures. When you are ready, calling the plt.show() function with no arguments will cause
matplotlib to open windows displaying the resulting graphs. You can also add a legend and/or a title to the plot, as well as
labels to the axes, as shown in the example below.

The following code will cause four windows to be displayed. Try running the code below on your own machine to see the results.
Notice that the plt.show() function does not return until the plotting windows are closed.

1 import matplotlib.pyplot as plt

2 import numpy as np

3
4 # here we plot a set of "y" values only; these are associated automatically

5 # with integer "x" values starting with 0.

6 plt.figure()

7 plt.plot([9, 4, 7, 6])

8
9 # if given two arguments, the first list/array will be used as the "x" values,

10 # and the second as the associated "y" values

11 plt.figure()

12 plt.plot([10, 9, 8, 7], [1, 2, 3, 4])

13 plt.grid() # this adds a background grid to the plot

14
15 # we can also create scatter plots. scatter plots require both "x" and "y"

16 # values.

17 plt.figure()

18 plt.scatter([10, 25, 37, 42], [12, 28, 5, 37], label='scatter')

19 # multiple calls to plt.plot or plt.scatter will operate on the same axes

20 plt.plot([10, 40], [5, 20], 'r', label='a line') # the 'r' means 'red'

21 plt.plot([5, 9, 15, 30], [10, 20, 30, 35], 'k', label='more data')

22 plt.legend()

23
24
25 plt.figure()

26
27 # generates 250 random points using a normal distribution

28 # with a mean of 170 and standard deviation of 10

29 x = np.random.normal(170, 10, 250)

30 plt.hist(x, bins=20, alpha = .5) # 20 bins, 50% transparency

31 plt.hist(np.random.normal(185, 10, 250), alpha = .5)

32 plt.title('A Histogram example')

33 plt.xlabel('A label for x')

34 plt.ylabel('The vertical axis')

35 plt.show()

36
37
38 # finally, display the results

39 print('Showing Graphs')

40 plt.show()

41 # Note that all figures need to be closed before the program prints Done

42 print('Done')

Using our graphing skills, we can now finally plot the graphs of the functions we defined earlier:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

15 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

1 import matplotlib.pyplot as plt

2 import math

3
4 def response(f, lo, hi, step):

5 # given a function f,

6 # calculate and return a list of x

7 # a list of and f(x) values

8 x, y = [], []

9 i = lo

10 while i <= hi:

11 x.append(i)

12 y.append(f(i))

13 i += step

14 return x, y

15
16
17 sinx, siny = response(math.sin, 0, 5, 0.1)

18 cosx, cosy = response(math.cos, 0, 5, 0.1)

19 def double(x):

20 return 2 * x

21 doublex, doubley = response(double, 0, 5, 0.1)

22 def square(x):

23 return x**2

24 squarex, squarey = response(square, 0, 5, 0.1)

25
26 plt.figure()

27 plt.plot(sinx, siny, label='sin')

28 plt.plot(cosx, cosy, label='cos')

29 plt.plot(doublex, doubley, label='double')

30 plt.plot(squarex, squarey, label='square')

31 plt.title('A final example')

32 plt.xlabel('A label for x')

33 plt.ylabel('The vertical axis')

34 plt.legend()

35 plt.show()

36 print("done")

37

Running the code above will produce a graph like the one below:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

16 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

9) Summary

In this set of readings, we revisited the details of how Python invokes functions. We also learned the ways in which Python
functions are first-class objects. They can be treated just like any other objects in Python: among other things, they can be
passed as arguments to functions and can be returned as the result of other functions! And we saw assert , which can be used
to test programs automatically.

In next week's readings, we'll investigate one way to use functions: recursion. And we'll talk about strategies for designing large
programs.

Back to Top

6.s090 https://smatz.mit.edu/6s090/week5/readings

17 of 17 7/14/2023, 1:08 PM

https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090/week5/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

