
Readings for Unit 4
The questions below are due on Friday July 14, 2023; 10:00:00 PM.

 

Licensing Information

The readings for 6.S090 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. You are free to make and share verbatim copies (or modified versions) under the terms of that license.

Portions of these readings were modified or copied verbatim from the very nice book Think Python 2e by Allen Downey.

PDF of these readings also available to download: 6s090_reading4.pdf

Table of Contents

• 1) Introduction
• 2) Functions

◦ 2.1) Multiple Arguments
▪ 2.1.1) Alternate Forms of Previous Functions

◦ 2.2) Substitution Model
• 3) Defining Custom Functions

◦ 3.1) Function Environment Diagrams
• 4) Calling Custom Functions

◦ 4.1) Abstraction
◦ 4.2) Short Version

• 5) More Environment Diagram Examples
• 6) Built-Ins
• 7) Print vs. Return

◦ 7.1) Return to Refactoring
• 8) Why Functions?
• 9) Extras: Syntactic Sugar

◦ 9.1) String formatting
• 10) Reading and Writing csv Files
• 11) Summary

1) Introduction

So far, we have learned about a number of useful tools in Python. We have learned about:

• several types of Python objects that allow us to represent a variety of things in Python's memory (the types we have seen
so far include numbers, strings, Booleans, the special None  value, and compound objects like lists, tuples, dictionaries and
sets); and

• several control flow mechanisms that allow us control over the order in which statements in a Python program are
executed (the control flow mechanisms we have seen so far include if /elif /else , and while  and for  loops).

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

1 of 26 6/30/2023, 12:08 PM

https://catsoop.org/
https://catsoop.org/
https://www.fsf.org/about/what-is-free-software
https://www.fsf.org/about/what-is-free-software
https://smatz.mit.edu/_util/license
https://smatz.mit.edu/_util/license
https://smatz.mit.edu/_util/source.zip
https://smatz.mit.edu/_util/source.zip
https://smatz.mit.edu/_util/jslicense.html
https://smatz.mit.edu/_util/jslicense.html
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://greenteapress.com/wp/think-python-2e/
http://greenteapress.com/wp/think-python-2e/
http://greenteapress.com/wp/think-python-2e/
http://www.allendowney.com/wp/
http://www.allendowney.com/wp/
https://smatz.mit.edu/_static/6s090/week4/readings/6s090_reading4.pdf
https://smatz.mit.edu/_static/6s090/week4/readings/6s090_reading4.pdf
https://smatz.mit.edu/6s090/week4/readings#_introduction
https://smatz.mit.edu/6s090/week4/readings#_introduction
https://smatz.mit.edu/6s090/week4/readings#_functions
https://smatz.mit.edu/6s090/week4/readings#_functions
https://smatz.mit.edu/6s090/week4/readings#_multiple_arguments
https://smatz.mit.edu/6s090/week4/readings#_multiple_arguments
https://smatz.mit.edu/6s090/week4/readings#_alternate_forms_of_previous_functions
https://smatz.mit.edu/6s090/week4/readings#_alternate_forms_of_previous_functions
https://smatz.mit.edu/6s090/week4/readings#_substitution_model
https://smatz.mit.edu/6s090/week4/readings#_substitution_model
https://smatz.mit.edu/6s090/week4/readings#_defining_custom_functions
https://smatz.mit.edu/6s090/week4/readings#_defining_custom_functions
https://smatz.mit.edu/6s090/week4/readings#_function_environment_diagrams
https://smatz.mit.edu/6s090/week4/readings#_function_environment_diagrams
https://smatz.mit.edu/6s090/week4/readings#_calling_custom_functions
https://smatz.mit.edu/6s090/week4/readings#_calling_custom_functions
https://smatz.mit.edu/6s090/week4/readings#_abstraction
https://smatz.mit.edu/6s090/week4/readings#_abstraction
https://smatz.mit.edu/6s090/week4/readings#_short_version
https://smatz.mit.edu/6s090/week4/readings#_short_version
https://smatz.mit.edu/6s090/week4/readings#_more_environment_diagram_examples
https://smatz.mit.edu/6s090/week4/readings#_more_environment_diagram_examples
https://smatz.mit.edu/6s090/week4/readings#_built_ins
https://smatz.mit.edu/6s090/week4/readings#_built_ins
https://smatz.mit.edu/6s090/week4/readings#_print_vs_return
https://smatz.mit.edu/6s090/week4/readings#_print_vs_return
https://smatz.mit.edu/6s090/week4/readings#_return_to_refactoring
https://smatz.mit.edu/6s090/week4/readings#_return_to_refactoring
https://smatz.mit.edu/6s090/week4/readings#_why_functions
https://smatz.mit.edu/6s090/week4/readings#_why_functions
https://smatz.mit.edu/6s090/week4/readings#_extras_syntactic_sugar
https://smatz.mit.edu/6s090/week4/readings#_extras_syntactic_sugar
https://smatz.mit.edu/6s090/week4/readings#_string_formatting
https://smatz.mit.edu/6s090/week4/readings#_string_formatting
https://smatz.mit.edu/6s090/week4/readings#_reading_and_writing_csv_files
https://smatz.mit.edu/6s090/week4/readings#_reading_and_writing_csv_files
https://smatz.mit.edu/6s090/week4/readings#_summary
https://smatz.mit.edu/6s090/week4/readings#_summary
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


These are some really powerful tools, and, as you've seen through the exercises, they are enough to accomplish a wide variety of
things!1 However, this week, we'll learn more about an incredibly powerful means of abstraction that will help you manage the
complexity as the programs you write become more and more complicated: functions.

Let's start our discussion of functions by considering the following code, which is designed to compute the result of evaluating a
polynomial (represented as a list of coefficients) at a particular numerical value:

coeffs = [7, 9, 2, 3] # represents 7 + 9x + 2x^2 + 3x^3

x = 4.2

result = 0

for index in range(len(coeffs)):

   result = result + coeffs[index] * x ** index

print(result)

This is a nice piece of code in the context of a program that requires evaluating a polynomial, but in some sense it isn't as useful
as it could be, in that it works only for the values of coeffs  and x  given above.

It is possible, however, to imagine a larger program that requires evaluating several polynomials. With the tools we have
available to us so far, if we wanted to use the code above to this end, we would have to copy the code and paste it to new
locations several times. Depending on what our program is doing, we might need to change the variable names coeffs , x , and
result  to prevent them from overwriting values we had computed for other polynomials. This is a pain! Not to mention, if we
find a bug in our implementation, we would have to go back and fix it in every copy-pasted copy we made of this code!

It would be nice to be able to generalize the notion of this computation so that we could perform it on arbitrary inputs as part of
a larger program. It turns out that a function, a type of Python object, is a great way to do this!

Functions are arguably the most powerful tool any programmer can have in their toolkit, but it can be a bit complicated to keep
track of how Python handles them. As such, we're going to introduce relatively few new topics in this section, so that we can
focus on functions, on how Python goes about evaluating code inside a function, and on how they can be used to increase the
modularity of the programs we write.

2) Functions

A function is a type of Python object that represents an abstract computation. It can help to think of a function as a little
program unto itself, which performs a specific task. Internally, that's what a function really is: it is a generalized sequence of
statements that Python can evaluate to compute a result. This is perhaps not the most elegant definition in the world, so let's
move on by way of example.

Python comes with several functions built in, and, in fact, we have already seen several examples of functions in Python. For
example, we already learned about len , which computes the length of an input sequence. We could use len  inside of a
program, for example, by evaluating the following expression: len("twine")

In this example, the name of the function we are working with is len . The parentheses indicate that we want to "call" the

function2, which means to evaluate the sequence of statements it represents. The expression inside the parentheses (here,
"twine" ) is called an argument3 to the function. In this case, the result is an integer representing the length of the argument.

It is common to say that a function "takes" one or more arguments as input and "returns" a result. This result is also called the
return value. In this case, len  is a function  object, and the result of calling it is an int . But, importantly, functions can return

values of any type!4

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

2 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_1
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_1
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_1
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_2
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_2
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_2
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_3
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_3
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_3
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_4
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_4
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_4
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


We can treat the result of calling a function the same way we would treat any other Python object. For example, we could:

print(len("twine"))  # print the result

x = len("yarn")  # store the result in a variable

y = len("thread") + 27/2 # combine the result with other operations.

2.1) Multiple Arguments

Some functions take more than one argument. To specify this, we separate arguments with commas inside the parentheses
associated with a function call. For example, consider Python's built-in round  function, which can take two arguments:

print(round(3.14159, 2))  # round returns a number; this will print 3.14

Try Now:

This is something of an aside, but it is worth mentioning that Python provides documentation for all of its built-ins,
which can be very helpful when determining how to use functions from Python. For example, see the section on
round .

2.1.1) Alternate Forms of Previous Functions

It turns out that two of the functions we have already dealt with have alternate forms that take more than one argument, which
may be useful in your programs moving forward:

• If print  is given more than one argument, it will print all of its arguments on the same line, separated by spaces. If it is
given no arguments (i.e., print() ), it will simply make a blank line.

• range  has three forms:

◦ If range  is given a single integer , the object it returns contains the numbers from  to , inclusive.

◦ If range  is given two integers  and , the object it returns contains the numbers from  to , inclusive.

◦ If range  is given three integers , , and , the object it returns contains all values  such that 
, in increasing order of . We can think of  as the step size that we take to go from  to . This form is

commonly used to iterate backwards: range(10, 0, -1) .

Try Now:

Experiment with these various forms to get a sense of how they behave. Try printing multiple values on a single line.
Try printing several ranges. Since range  does not return a list (but, rather, a special range  object), you need to
convert that object to a list or tuple to see the objects inside of it (for example, list(range(9))  or
tuple(range(1, 4)) ).

x 0 x − 1

x y x y − 1

x y z x + i × z x ≤ x +
i × z < y i z x y

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

3 of 26 6/30/2023, 12:08 PM

https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/functions.html#round
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

As we see above, print  is a function, as well! What is the return value of print? Try storing the result of a call to
print  in a variable, and then displaying it (again with print !).

Show/Hide

Consider, for example, the following code:

x = print(7)

print(x)

The first line stores the result of calling print(7)  in a variable x . Then, on the next line, when we print
x , and we see the following: None . So print  will display its arguments to the screen, but then it will
return None .

print  was our first example of an impure function (or, said another way, a function with "side effects").
Not only did it return None , but it also had the effect of displaying something to the screen.

What will the following piece of code print?

print(print(print(10)))

Show/Hide

In evaluating this code, the first function call Python actually evaluates is the inner-most print(10) .
This will display a 10  to the screen, and will return None . So after evaluating that expression, we are left
with: print(print(None)) .

Python then evaluates the inner-most print(None) . This will display None  to the screen and will also
return None . After evaluating that expression, we are left with: print(None) , which displays yet another
None  to the screen.

All things considered, this code will have printed:

10

None

None

2.2) Substitution Model

Before we can go too much farther, we need to think about how Python evaluates functions in our substitution model. In order

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

4 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


to evaluate a function call, Python takes the following steps:

• Looks up the value to the left of the parentheses
• Evaluates each of the arguments from left to right
• Calls the function with the results of evaluating the arguments

Try Now:

Use the substitution model to predict the result of evaluating the following expression:

round(985.654321 + 2.0, len("ca" + "ts"))

Show/Hide

Python starts by evaluating round  to find the built-in function. Then it moves on to evaluating the
arguments, from left to right.

The first argument evaluates as we might expect: 985.654321 + 2.0  becomes 987.654321 . So after
this evaluation, our overall expression looks like:

round(987.654321, len("ca" + "ts"))

In order to evaluate the second argument, we need to evaluate another function call! Here, Python
looks up len  and finds the built-in function, and then moves on to evaluating the arguments to len .

There is only one argument to len , the result of concatenating "ca"  and "ts" , which makes our
overall expression:

round(987.654321, len("cats"))

Still in the process of evaluating the second argument to round , Python calls len  and replaces the
function call with its return value:

round(987.654321, 4)

Finally Python can call round  on these two arguments, which gives us:

987.6543

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

5 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

What happens when you try to run the following piece of code? Why did that happen?

x = 2

z = x(3.0 + 4.0)

print(z)

Show/Hide

If you ran the code exactly as it is typed above, you will have seen an error message: TypeError:
'int' object is not callable . In typical Pyton fashion, this is perhaps a little bit obtuse. But what
Python is trying to say is: you tried to call something by using parentheses, but instead of being a
function, the thing you were trying to call was actually an int . Since Python doesn't know what it
means to call an int , we see this error.

So how did Python get to that point? Let's use our substitution model to find out. We'll start with x(3.0
+ 4.0) . Python will start by looking up the value of x , and finding 2 , which leaves us with: 2(3.0 +
4.0) . Next, Python will evaluate the value inside the parentheses, giving 2(7.0) . Next, Python proceeds
by attempting to call 2  with 7.0  as an argument. Since 2  is not a function, it is not clear exactly what
this means, and so Python gives us an error.

Presumably, the code above was intended to multiply 2  and 3.0+4.0  rather than calling 2  with
3.0+4.0  as an argument. But Python isn't that smart, so we have to be very explicit if that's what we
want (in this case, we have to include a *  to indicate muiltiplication).

3) Defining Custom Functions

Using built-in functions or functions imported from Python modules is all well and good, but real power comes from being able
to define functions of your own. This is accomplished via a Python statement called a function definition statement, which uses a
Python keyword called def .5

This is perhaps best seen by example:

def maximum(x, y):

if x > y:

        z = x

else:

        z = y

return z

This statement does two things:

• it creates a new function  object in memory, and
• it associates the name maximum  with that object in the current frame.

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

6 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_5
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_5
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_5
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


A function definition statement always starts with the keyword def , followed by an arbitrary name for the function. The
sequence of names within the parentheses after the function's name are called parameters or, interchangeably, arguments (in
this case, x  and y ), and the function describes a computation in terms of those parameters (as well as, potentially, other values,
constants, etc.).

Like many of the structures we have seen, function definitions also have a body (all the code that is indented one level farther
than def ; in this case, the whole if /else  statement). The return  keyword, which is only usable inside a function definition,
tells Python what the function should produce as its return value when it is called.

Importantly, this statement only defines the function; Python does not run the code in the function body yet! It simply makes
an object that represents this function and associates the given name with that object.

3.1) Function Environment Diagrams

As with every new object we've introduced, we'll need a way to represent these objects in memory. Functions need to keep track
of three pieces of information, and we'll try to depict all of those in our representation:

1. The names of the parameters to the function, in order;
2. The code in the body of the function; and
3. The frame in which the function was defined.

The following shows an example environment diagram that would result after executing the function definition statement
above:

A few notes about this drawing:

• Note that the function definition did two things: it created a new function object, and it bound the name maximum  to that
object in the global frame.

• The names x ,y  on the top line of the function object represent the parameters of the function.
• The red arrow points back to the frame in which the function was originally defined (in this case, the global frame).

We can then call this function just as we would with any of the built-in functions (or imported functions) we've seen so far. For
example:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

7 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


a = 7.0

b = 8.0

x = 3.0

y = 4.0

c = maximum(a, b)

We'll now spend some time learning about what happens when this function is called. In the simplest terms, this is what
happens:

1. First, Python looks up the name maximum  and finds the function object in memory.
2. Next, Python runs the code in the function body with the parameters replaced with the values given (here, the body of the

function would be evaluated with x  replaced by 7.0  and y  replaced by 8.0 ) until either it reaches a return  statement or
the end of the body. If a return  statement is reached, execution of the function stops and the associated value is
returned; if the end of the function is reached (without hitting a return  statement), the function returns None .

So after running the code above, c  will have value 8.0 .

That said, it will be important for us to understand how exactly Python got to that result, and so we'll go into more detail on
these steps in the next section. Grab a cup of tea and settle in! This will get complicated, but understanding it is crucial to
understanding some of the behaviors we will see from Python in the future! Don't be afraid to re-read multiple times, and, of
course, to ask questions if you are confused!

4) Calling Custom Functions

We now examine what happens when a user-defined function is called. We'll go through the example from above. In unit 5's
readings, we'll explore more complex examples.

Here is the code (repeated from above) for our example:

a = 7.0

b = 8.0

x = 3.0

y = 4.0

c = maximum(a, b)

(Assume that maximum  has already been defined as above)

We know how the first four lines will behave: Python will associate the names a , b , x , and y  with the values 7.0 , 8.0 , 3.0 , and
4.0 , respectively, in memory, resulting in the following environment diagram:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

8 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Now we are on to the line where the function call is evaluated. To accomplish this evaluation, Python completes the following
steps:

1. As we saw with built-in functions, Python first starts by evaluating the name maximum  (finding the function  object),
followed by the arguments to the function (which evaluate to the 7.0  and 8.0  that a  and b , respectively, point to).

2. This is where things get different. Python's next step when calling a user-defined function is to create a new frame. This
frame will be similar to the global frame in that it will map names to variables, but these variables will be local to the
function (i.e., they will only be accessible inside the function being called).

Once this new frame is created, Python binds the names of the parameters to the argument that were passed in to the
function. From this point on, variable lookups will happen inside this new frame (until the function is done executing).

This frame also contains a "parent pointer" to the environment in which the function being called was defined.6

Once this step is done, we will have an environment diagram like the following:

As promised, this is a bit complicated. The frame in the bottom-left contains the bindings that exist inside the function.
The green arrow represents the "parent pointer."

3. Python then executes the body of the function within this new frame. This means that, if Python looks up x , it finds the
value 7.0  (bound in this frame), rather than the 3.0  value that is bound in the global frame. When looking up a variable, if
it is not found in the current frame, Python then continues looking for that name in the parent frame before giving up.

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

9 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_6
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_6
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_6
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


In the process of executing the function body, if Python makes any new assignments, those are also made in the current
frame.

So when our example code assigns a value to the variable z , that binding is made in the current frame. In the course of
executing the conditional, we assign z  to the same value as y , which results in the following environment diagram:

4. When the body is over or a return  statement is reached, Python notes the value to be returned. (In the below diagram,
the red "return" does not indicate an actual new variables called "return"; rather, it simply indicates the value that is to be
returned from the function). Here, the return value was z , which pointed to the 8.0  currently in memory, so that is the
value that will be available as the result of calling this function:

Python then stops executing this function and returns to executing in the frame from which the function was called, after

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

10 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


returning the value in question. It also cleans up the new frame it created7. In our example from above, the return value is
then associated with the name c  in the global frame, leaving us with the following:

4.1) Abstraction

Notice that above, the process of creating the new frame gave us a wonderful feature: the variables inside the function body
don't affect the variables outside the function body. This allowed us to call something x  inside the function body and not have
that cause problems with the thing called x outside the function (when the function is done executing, if we print x , we see the
3.0  that was assigned to x  in the global frame)!

This is the real reason functions are so powerful: they offer us a means of abstraction (meaning, once we have defined a
function, we can use it knowing only its end-to-end behavior, without worrying about exactly how that behavior was
implemented in the function body, what variable names were used, etc.).

4.2) Short Version

Here is the short version of Python's process for calling a user-defined function (again, for details, please see above):

1. Evaluate the arguments. (If an argument is itself a function call, apply these steps to it.)
2. Make a new frame. It stores a pointer to the frame's parent (the frame in which the function was defined).
3. Bind the arguments. In step 1, you already evaluated and simplified the arguments. Now you just have to bind variables to

those values in the new frame.
4. Execute the body of the function in this new frame. Depending on what you see, you may be drawing more bindings

and/or drawing new frames.
5. Note the return value of the function.
6. When execution has finished, remove the frame and resume execution in the calling frame.

5) More Environment Diagram Examples

Let's look at another environment diagram example. The code below, defines and calls a function named quad_eval , which

evaluates the value of a quadratic formula  at a particular value, v .8av +2 bv + c

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

11 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_7
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_7
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_7
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_8
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_8
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_8
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


1 def quad_eval(a, b, c, v):

2     term1 = a * v ** 2

3     term2 = b * v

4 return term1 + term2 + c

5
6 n = quad_eval(7, 8, 9, 3)

7 print(n)

Use the buttons below to navigate through the process of drawing out the environment diagram for this program. We
encourage you to follow along and draw the diagram for yourself alongside us as you're stepping through below!

<< First Step   < Previous Step   Next Step > Last Step >>

STEP 12
And here we are, at the diagram representing the final state of our program. There's something beautiful about this
end result: even though we just went through quite a process to get here (making a new frame, setting up local
variables, allocating a bunch of new objects, garbage collecting things, etc.), the end result is quite clean: we have n
now bound to the result of that function call, and all of the intermediate machinery used to complete the function
call is now gone!

Now that you've worked through the example above, answer the following question about it:

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

12 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


In step 4 above, when we set up the frame F1 for this function call, we set its parent pointer to be the global frame.
For what reason was the parent pointer set this way?

The function we're calling was being called from the global frame.

The function we're calling was originally defined in the global frame.

The name we used to refer to the function, quad_eval , was bound in the global frame.

Something else

Save Submit View Answer

As staff, you are always allowed to submit. If you were a student, you would see the following:
You have infinitely many submissions remaining.

Another Example

Now that we've talked through the process by which functions are defined and called, we'll take a look at how they play out in a
small example. This small program is, admittedly, a little bit contrived... but it should still illustrate how these rules give rise to
the behaviors that we expect to see from functions.

Here is the piece of code we'll be considering (note that the names foo  and bar  don't have any real meaning, but they're
conventionally used to refer to functions for which we don't have nicer names, often in silly examples like this):

1 x = 500

2
3 def foo(y):

4 return x+y

5
6 z = foo(307)

7
8 print('x:', x)

9 print('z:', z)

10 print('foo:', foo)

11
12 def bar(x):

13     x = 1000

14 return foo(308)

15
16 w = bar(349)

17
18 print('x:', x)

19 print('w:', w)

Try Now:

**Without running the code above**, try to predict what will be printed to the screen and fill in your guesses below.
If you aren't able to predict these values correctly, that's OK (mistakes are a great way to learn!), but please make an
earnest attempt to answer without relying on the description that follows, before moving on to our explanation.

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

13 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


<< First Step   < Previous Step   Next Step > Last Step >>

What value will be printed for x  on line 8?

Check Formatting Submit View Answer

As staff, you are always allowed to submit. If you were a student, you would see the following:
You have infinitely many submissions remaining.

What value will be printed for z  on line 9?

Check Formatting Submit View Answer

As staff, you are always allowed to submit. If you were a student, you would see the following:
You have infinitely many submissions remaining.

What value will be printed for x  on line 18?

Check Formatting Submit View Answer

As staff, you are always allowed to submit. If you were a student, you would see the following:
You have infinitely many submissions remaining.

What value will be printed for w  on line 19?

Check Formatting Submit View Answer

As staff, you are always allowed to submit. If you were a student, you would see the following:
You have infinitely many submissions remaining.

Now that you have made a guess, let's draw an environment diagram as a way to help us reason about what happens when we
run this code; and if we're careful with following the associated rules, we can use the diagram to accurately predict the output of
the program above. But this is a complicated example, so grab a cup of tea or coffee and settle in. If you are confused by
anything that follows, please feel free to ask for help!

1 x = 500

2

3 def foo(y):

4 return x+y

5

6 z = foo(307)

7

8 print('x:', x)

9 print('z:', z)

10 print('foo:', foo)

11

12 def bar(x):

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

14 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


STEP 1
Before we start running this
program, we set up our initial
environment structure. Here we
have set up our "global frame"
(GF), in which our program will
be executed.

The next step to be executed is
the assignment statement on
line 1 (x = 500 ). What should
the diagram look like after that
statement has been executed?

STEP 2
Evaluting 500  gives us a new
object that represents the
integer 500. After creating this
object, we associate the name x
with it (in the global frame).

The next statement we
encounter is a function definition.
As mentioned above, Python will
do two things here: firstly, it will
make a new object to represent
this function; then, it will
associate that new function with
a name (in this case foo ).

STEP 3
Here we see the function object
itself. Note the three things
stored inside of the function: the
names of the parameters (in this
case, a single parameter called
y ), the body of the function
(return x+y ), and a reference to
the enclosing frame (i.e., the
frame we were running in when
we executed this def
statement).

Here we have labeled the
reference to the enclosing
environment with those words,
but we will not always write that

out.

STEP 4
Now we have also associated
that function with the name
foo in the global environment.

Note that we have not run any
part of this function's body yet;
we have just stored away the
relevant information so that we
can eventually call this function.

STEP 5
After finishing with the def
statement, we are moving on to
line 6, z = foo(307) . This
represents a function call, and so
we need to follow the steps
outlined under the "Calling a
Function" header above.

We start by figuring out what
function to call and what to pass
to it. In this case, the function
we're calling (the thing before
the round brackets) is given by
the expression foo . Evaluating
that name in the global frame,
we follow the associated arrow

and find the function object on the right (marked with a small green check mark so that
we can keep track of it).

Then we evaluate the arguments to the function. In this case, we have a single argument
307 . Evaluating that expression produces a new object representing the integer 307.

Once we know what function we're calling and what arguments we're passing in to it, we
are ready to proceed with the function call.

STEP 6
Our next step is creating a new
frame to store the local variables
associated with this function call.
So we have made a new frame
here. We also give it a name (just
so that it is easier to refer to it),
in this case F1.

Note that we have already drawn
F1's parent pointer. How did we
know that GF was the right
parent? When we made F1, we
looked at the function we were
calling and used its enclosing
frame as F1's parent.

Now that we've got our new
frame set up, we proceed with our next step: binding the parameters of the function to
the arguments that were passed in.

STEP 7
Here we see the end result of
binding the parameters of our
function to the arguments that
were passed in. In this case, the
function we're calling is a
function of a single parameter
(y ), and the argument that was
passed in is the object we see
containing 307.

After this step, we have our local
frame all set up, and we are now
ready to actually run the body of
the function.

STEP 8
After we've set up the frame
associated wth this function call,
we proceed by executing the
body of the function inside of
F1. In this case, the body of the
function is return x+y .

Executing return x+y  with
respect to F1 involves evaluating
x  and y  with respect to F1 and
then adding those results
together.

Evaluating y  with respect to F1,
we follow the arrow from y  to
the associated object, finding the

integer 307 that was passed in as argument.

Evaluating x  with respect to F1 is a little more complicated, since the name x  is not
bound in F1. But here we see the nature of the parent pointer. When evaluating a variable
name in a given frame, if we don't find the name bound in that frame, we will follow the
frame's parent pointer and look for the name there. If we find the name there, the
associated object is the result. If we still don't find the name, we follow the next parent
pointer; and we keep doing this until we either find the name we're looking for, or we run
out of frames to look in. In this case, we don't find x  in F1, so we follow its parent pointer
and look for x  in GF, where we find the associated value of 500.

Once we have those two pieces, we add them together, producing a new object
representing the integer 807. This new object is the return value from our function call,
which we will sometimes denote as above. Our function call is now done, and we need to
look back and remember how we got here. In this case, we started this function call in the
process of evaluating line 6, where our goal was to associate the result of the function call
with the name z  in the global frame.

STEP 9
Here we see the result of that
assignment. At this point, we are
done with the function call, and
we can clean up all of the
machinery that we used to figure
out how the function call
behaved and move back to
executing code in the global
frame. The result of that cleanup
will be shown in the next step.

STEP 10
Here we see the result after line
6 has been executed. Next, we
hit three print statements.
Following the arrows in our
diagram, we can now see that x
is associated with 500  and z  is
associated with 807 ; so we can
predict that those are the values
that will be printed for x  and z .
But an important question
remains: what will be printed for
foo?

Even though it may seem
strange at first, we can
determine what will be printed

for foo  in the exact same way that we figured out what to print for x  and z : by following
the arrow in our diagram from the name foo . In this case, we find the function object on
the right side of the diagram, which is what Python will print.

Python prints this in a somewhat strange way, but it's trying its best. It prints out a little
representation that includes the function object's location in memory, something like
<function foo at 0x7f30d9080040> , where the exact number on the right side will be
different each time we run the program.

Importantly, what we are printing when we print(foo)  is the function object itself, not
the result of calling that function. Line 10 does not cause foo  to be called; we simply look
up the name foo  and print the associated object.

Ultimately, we see something like the following as the output of lines 8-10:

x: 500

z: 807

foo: <function foo at 0x7f30d9080040>

Now, we are ready to move on to our next statement, the second def  on line 12.

STEP 11
We follow the same rules when
executing this def  statement as
we did before, and the first part
of that process results in a new
function object, shown in the
diagram above. Note again that
we have not run any of the code
in the body of this new function
yet; we are just storing it away to
be called later.

STEP 12
The def  statement also
associates the name bar  with
this function, in the global frame.
The end result is shown in the
diagram above.

With that, we are done with
evaluating the def  statement
that starts on line 12, and we are
ready to move on to the next
statement, the assignment on
line 16.

STEP 13
Evaluating the assignment
statement on line 16 involves
first evaluating the expression on
the right-hand side of the equal
sign, which is a function call. We
start that process by determining
what function we're calling and
what arguments we're passing in
to it.

In this case, the function we're
calling is given by bar , and a
single argument 349  is given. So
we evaluate the name bar ,
finding the function object
indicated with the green

checkmark above; this is the function we're going to call. And evaluating 349  produces a
new object representing the integer 349, which is the object we are passing in to the
function.

Once we know what function we're calling and what we're passing as inputs, we can
proceed with the function call using the rules described earlier.

STEP 14
We start by making a new frame
to store this function's local
variables. Above, we've made
this frame and labeled it as F2.
Note that F2 has a parent
pointer to our function's
enclosing frame.

After we have created the frame,
our next step will be to bind the
parameters of the function to
the objects passed in as
arguments; the result of this
process will be shown in the next
step.

STEP 15
Here, we show the result of
binding the name x  to the value
349  inside of our new frame F2.

I think it is important to note
here that this binding did not
affect the value associated with
the name x  in the global frame.
Even though x  refers to 349  in
F2, x  still refers to the value 500
in the global frame. And since
we will ultimately evaluate the
body of this function inside of
F2, referring to x  in the function
will not find the global binding
of x .

This setup (where each function call gets its own frame to store its local variables) is
generally really nice and quite powerful, in that it allows us to call the parameters of our
functions (and other local variables inside of our functions) by any names we wish,
without needing to worry about accidentally messing up the variable bindings in other
frames.

Anyway, once we have made that binding, we are ready to execute the body of the
function inside of F2. And so the next statement we encounter is x = 1000 , which we
evaluate with respect to F2. Can you predict what the result will look like? We will show it
in the next step.

STEP 16
Since we were executing x =
1000  with respect to F2, we
modify the arrow from x  inside
of F2. Note again that the global
binding of x  is unaffected. At
this point, we're done with x =
1000 , so we can move on to the
next statement.

STEP 17
Remember that at this point, we
are still executing the body of
our function inside of F2. And
the next statement we encounter
is return foo(308) . This is
another function call! So what do
we do?

Conveniently, even though we
are now going to be two
function calls deep, we evaluate
this second function call in
precisely the same way we
evaluated the first one, by
following the rules laid out
earlier on this page. And so the

first thing we need to do is to determine what function we're going to be calling and
what arguments we're going to pass in. But there is a little bit of subtlety here that we
need to be careful of.

Because this function call is being made from F2 , figuring out what function to call
involves looking up the name foo  inside of F2. We don't find the name foo  there, so we
follow the parent pointer and look in the global frame, where we find that the name foo
is bound to the function object that now has two small blue checkmarks next to it; so
that's the function object we'll be calling.

Then we evaluate the argument and get a new integer 308, which has been drawn in
above as well. And, now that we know what function we're calling and what arguments to
pass in, we can proceed with actually calling the function. Our first step will be to make a
new frame for this new function call.

STEP 18
Here we have drawn in our new
frame (called F3), but we're
actually not quite done with that
part yet because we have not yet
given this frame a parent
pointer. **Please take a moment
and try to predict**, given the
rules we have outlined here,
where should F3's parent pointer
go?

STEP 19
The key rule for determining a
new frame's parent pointer is:
what is the enclosing frame of
the function we're calling? In this
case, we're calling the function
drawn toward the top of the
diagram (with the two blue
checks next to it, which is
referred to as foo  in the global
frame); and that function's
enclosing environment is GF, so
that's where our new frame's
parent pointer goes.

Importantly, this is true even
though we made this function

call from F2! What matters for determining this structure is not where we're making the
call from, but rather where the associated function was originally created. This may seem
like a strange rule at first, but it leads to a lot of nice properties that we will discuss in
more depth during class.

And now that we've set up our new frame, we can move on to our next step, binding the
parameters of the function to the arguments that were passed in.

STEP 20
The function we're calling is a
function of a single parameter
called y , and so inside of F3, we
bind the name y  to the 308 that
was passed in. Having done so,
we are ready to execute the
body of the function inside F3.

STEP 21
Evaluating the body of the
function with respect to F3
involves evaluating both x  and
y  with respect to F3 and then
adding the results together to
produce the return value of this
function call.

Evaluating y  with respect to F3
is relatively straightforward: y  is
bound in that frame, and so we
follow its arrow to find the 308
that we passed in as an
argument.

Evaluating x  with respect to F3
is more involved. We look for x  in F3, but we don't find it there, so what do we do next?
We follow F3's parent pointer and look for x  there. So, importantly, we find the value 500,
to which x  is bound in the global frame (and not the 1000 to which x  is bound in F2).

Adding these values produces a new value 808 , which will be our return value.

Now we need to think a little bit. How did we get to this function call, and where should
we return back to? Remember that we started this function call in the process of figuring
out what to return from our original call to bar . So we'll jump back to that point in the
execution, with our new 808  value in hand.

STEP 22
Since the line we had been
executing in F2 was return
foo(308) , we're simply going to
take the result of that function
call (the 808 we just figured out)
and mark it as the return value
from F2, which has been
reflected above.

At this point, we are also done
with that second function call. So
on the next step, we'll clean up
some of the machinery that we
created purely for determining
that result.

STEP 23
And we also need to remember:
how did we come to be calling
bar  in the first place? That is,
now that we have the output of
the function call, where do we
return to?

We first got here by executing w
= bar(349)  in the global frame.
So that's where we'll go next,
binding the name w  to 808
inside of the global frame.

STEP 24
Phew, that was quite a journey!
But now we're done with
executing line 16 in our original
program!

At this point, we can clean up F2,
since we're done with that
function call, leaving us with one
final diagram.

STEP 25
Now the only thing left to do is
to figure out what prints when
lines 18 and 19 are run. Tracing
the arrows from x  and w  from
the global frame, we find 500
and 808 (respectively), and so
those are the values that will be
printed:

x: 500

w: 808

After the value 808 has been
returned from F2, we no longer
have a need to keep F2 around,

and so it (as well as the integer 1000  that was only reachable from F2) will be garbage
collected, leading to the final diagram.

STEP 26
This diagram represents the
state of memory at the end of
our little program. Notice that
the value of 808  that we got
from calling our function is still
available to us, via the name w  in
the global frame.

13     x = 1000

14 return foo(308)

15

16 w = bar(349)

17

18 print('x:', x)

19 print('w:', w)

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

15 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


One last question for this section: imagine adding x = 2000  to line 5 of the program above and running it again.
Which of the following printed values would be different from running the code without that change?

x

z

foo

w

Save Submit View Answer

As staff, you are always allowed to submit. If you were a student, you would see the following:
You have infinitely many submissions remaining.

If you're unsure of why this answer is what it is, think about how things would change in terms of our environment diagrams.
And, of course, if you're stuck, please don't hesitate to ask for help!

6) Built-Ins

Now that we have talked about the notion of multiple frames, we can clear something up about Python's built-ins. We have
talked a lot now about how Python looks up the values associated with variable names, and you may have wondered how
Python found the built-in values.

How did Python know what function to call when we referenced print? It is true that print  and the other built-ins do not exist
in the global frame. Rather, we can think of the global frame itself as having a parent pointer to a special "built-ins" frame: when
Python looks up a name in the global frame and doesn't find it, it then looks in this special "built-ins" frame before throwing a
NameError .

This is how the lookups for, for example, print  and len  proceed: Python first looks for them in the global frame. Since it
doesn't find them there, it looks in the built-ins frame, where it finds them.

Failed variable lookups also proceed in this same way. Say we made a typo and were accidentally looking up the value pritn . In
looking this up, Python would first look in the global frame; when it doesn't find pritn  there, it would then look in the built-ins
frame; and when it doesn't find pritn  there either, it will give up and raise a NameError .

7) Print vs. Return

In general, print statements are useful for displaying information to the user, and return statements allow the results of function
calls to be stored and passed around within the program, which turns out to be quite useful since you can then look up (or even
print) those values again later.

One important difference between print statements and return statements is that once Python reaches a return statement inside
a function it immediately stops and exits the function after returning the value. While one function can have multiple print
statements that display multiple lines to the screen, return statements are considered a 'hard stop' to the function.

For example, consider the outputs of the following two functions:

def without_return():

print("without return")

print("this line gets printed")

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

16 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


def with_return():

print("with return")

return "STOP"

return "this line never runs"

print("this line never gets printed")

without_result = without_return()

'''   the above line results in the following output:

without return

this line gets printed

'''

print(without_result)  # None

result = with_return()

'''   output:

with return

'''

print(result) # STOP

It is also important to note that in the absence of a return statement, all functions by default return None. For example, consider
this function that returns 'positive' if a number is greater than 0:

def is_positive(x):

if x > 0:

return 'positive'

result = is_positive(5)

print(result) # prints 'positive'

result2 = is_positive(0)

print(result2) # prints None

Just like print allows you to display multiple values, return statements can also output multiple values:

def divide(dividend, divisor):

# calc the quotient and remainder of dividing two numbers

return dividend // divisor, dividend % divisor

result = divide(10, 3) # returns a tuple

print(result) # (3, 1)

print("result is", result[0], "remainder", result[1]) # result is 3 remainder 1

num, remainder = divide(19, 4)  # unpacking the returned tuple

print(num) # 4

print(remainder) # 3

Unlike print, return statements do not need round brackets. If we want to return multiple values, we simply separate them by a
comma. If you recall from a couple of units ago, this creates a tuple, which we can clearly see when we print out the result. To
access the different returned values, we can simply index into the result, or unpack them into separate variables, as shown
above.

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

17 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


7.1) Return to Refactoring

For an example of why using return statements are useful, consider the following problem which we solved earlier in the course:

def simple_full_packages(order, package_limit):

'''

    Calculate the number of full packages that can be delivered, assuming near 

    infinite inventory.

    Inputs:

        order (int) - number of items requested

        package_limit (int) - number of items that can fit in a shipment

          container

    

    Returns:

        The integer number of completely filled packages. 

    '''

if package_limit == 0:

        num_packages = 0 # avoid Division by 0 error

else:

        num_packages = order // package_limit  

    

return num_packages

def num_packages(order, package_limit):

''' 

    Calculate the fewest number of packages that would be required to ship 

    all items in an order.

    Inputs:

        order (int) - number of items requested

        package_limit (int) - positive number of items that can fit in a 

                                shipment container

    

    Returns:

        The integer number of packages required. 

    '''

if package_limit == 0:

        num_boxes = 0 # avoid Division by 0 error

else:

        num_boxes = order // package_limit  

    

if package_limit*num_boxes < order:

        num_boxes =  num_boxes + 1

return num_boxes

if __name__ == "__main__":

# Local testing -- feel free to add your own tests as well!

print("testing simple_full_packages:")

print(f"Got {simple_full_packages(10, 0)=}, expected 0")

print(f"Got {simple_full_packages(10, 3)=}, expected 3")

print(f"Got {simple_full_packages(5, 5)=}, expected 1")

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

18 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


print("\ntesting num_packages:")

print(f"Got {num_packages(10, 1)=}, expected 10")

print(f"Got {num_packages(10, 3)=}, expected 4")

print(f"Got {num_packages(10, 5)=}, expected 2")

Notice how the conditional logic is very similar for both functions. In fact, the only difference is a single if  statement in
num_packages . Because we used return statements instead of print, we can refactor our code as follows, to make it simpler and
more concise:

def simple_full_packages(order, package_limit):

'''

    Calculate the number of full packages that can be delivered, assuming near 

    infinite inventory.

    Inputs:

        order (int) - number of items requested

        package_limit (int) - number of items that can fit in a shipment

          container

    

    Returns:

        The integer number of completely filled packages. 

    '''

if package_limit == 0:

        num_packages = 0 # avoid Division by 0 error

else:

        num_packages = order // package_limit  

    

return num_packages

def num_packages(order, package_limit):

''' 

    Calculate the fewest number of packages that would be required to ship 

    all items in an order.

    Inputs:

        order (int) - number of items requested

        package_limit (int) - positive number of items that can fit in a 

                                shipment container

    

    Returns:

        The integer number of packages required. 

    '''

    num_boxes = simple_full_packages(order, package_limit)

    

if package_limit*num_boxes < order:

        num_boxes =  num_boxes + 1

return num_boxes

Now instead of repeating code, num_packages  can use simple_full_packages  to calculate the initial number of boxes, and
then decide whether a partially full box will be needed.

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

19 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Code that is simple, concise, and easy to read tends to be both easier to understand and debug. That is why refactoring, the
process of revising code to have better style (e.g., descriptive variable names, better high-level comments, consistent spacing),
reduced repetition, and less complexity, is an important programming skill that we will continue to practice this week.

8) Why Functions?

To close this section, here are some reasons for using functions:

• Creating a new function gives you an opportunity to name a group of statements, which makes your program easier to
read and debug.

• Functions can make a program smaller by eliminating repetitive code. Later, if you make a change, you only have to make
it in one place.

• Dividing a long program into functions allows you to debug the parts one at a time and then assemble them into a
working whole.

• Well-designed functions are often useful for many programs. Once you write and debug one, you can reuse it.

9) Extras: Syntactic Sugar

Before closing fully, we briefly describe some of Python's "syntactic sugar" to which you've been exposed. Wikipedia explains
that syntactic sugar is "syntax ... that is designed to make things easier to read or to express. It makes the language 'sweeter' for
human use: things can be expressed more clearly, more concisely, or in an alternative style that some may prefer."

Last week, we saw a lot of examples of syntactic sugar in the form of ternary statements, comprehensions, and the built-in
functions min, max, sum and sorted. This week we're going to dive into one more useful piece of syntax that we've been using
throughout the course but haven't explained: f-strings.

9.1) String formatting

Sometimes we want to print a combination of text and variables. For example, say we were a grocery store that wanted to
display the cost of an item a user selected. With what we know about type-casting and string concatenation we could
accomplish this as shown in the example below:

item = 'bread'

cost = 1.99

print("The " + item + " costs $" + str(cost) + ".")

# "The bread costs $1.99."

But what if we wanted to print the cost of five different items? It would be a pain to make sure all the +  signs and quotation
marks were in the right places. That's why more recent versions of python have introduced more convenient ways of formatting
strings.

One particularly useful string formatting method is called the f-string. For example:

print(f"The {item} costs ${cost}.")

# "The bread costs $1.99."

Placing an f  at the beginning of the string lets python know to format it so that any value enclosed in curly brackets is
evaluated, cast to a string, and then automatically concatenated in the right place.

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

20 of 26 6/30/2023, 12:08 PM

https://en.wikipedia.org/wiki/Syntactic_sugar
https://en.wikipedia.org/wiki/Syntactic_sugar
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Using an =  sign before the closing curly brackets indicates that you want to display both the code as a string, and the result of
evaluating that code. For example:

nums = [1, 2, 3, 4, 5]

print("len(nums) = " + str(len(nums)))

Can be more concisely written with the following f-string:

nums = [1, 2, 3, 4, 5]

print(f"{len(nums) = }")

An older python string formatting method that you might encounter in the "wild" uses %  signs to act as a placeholder for a
value.

print("The %s costs $%g." % (item, cost))

# "The bread costs $1.99."

The %s  indicates that a string value will be inserted, %g  means a floating-point number will be inserted. At the end of the string,
the values are listed in order. You can find more information about formatting data types using the %  notation in python's
documentation.

So far, we've used f-strings to help us manually check our code to see if it's getting the expected result. In future units, we'll
learn about other tools we can use to get Python to test our code for us!

10) Reading and Writing csv Files

Finally, let's talk about one more useful built-in module.

Sometimes the input to your program might be stored in a file. For example, if I am writing a program to process items in my
grocery list, and my grocery list lives in a comma-separated values file called grocery_list.csv, it'd be convenient if my program
could access the contents of that file. Python can do just that!

The first thing to do in order to use a file is to open it. This is done by invoking the built-in function open

We can open a file in different modes, like read mode or write mode. Since we're just reading from the file for now, we'll tell that
to the function open  by writing the string 'r' . If my grocery_list.csv file is in the same directory as my Python program9, I can
write

opened_file = open("grocery_list.csv", "r")

opened_file  is now an object. With opened_file  in hand, we can use the csv module to read the file contents.

We must tell Python that we plan to use it by writing import csv  at the top of our file. Then we can create a reader object by
calling a function reader  which the csv  module makes available to us. Our code is now:

import csv

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

21 of 26 6/30/2023, 12:08 PM

https://docs.python.org/3/library/stdtypes.html#old-string-formatting
https://docs.python.org/3/library/stdtypes.html#old-string-formatting
https://docs.python.org/3/library/stdtypes.html#old-string-formatting
https://docs.python.org/3/library/stdtypes.html#old-string-formatting
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#open
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_9
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_9
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_9
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


opened_file = open("grocery_list.csv", "r")

reader = csv.reader(opened_file)

reader  is an object that allows for iteration. We can print out all the rows in the file, which the reader stores as lists of strings,
by looping:

for row in reader:

print(row)

For a few reasons10 (which admittedly aren't likely to be critical for us), if we open a file, we should close it as well, after we're
done with it:

opened_file.close()

Since it's very easy to forget to close a file, Python has some great syntactic sugar which automatically does it for us. We can
create a with/as  block, inside of which the opened file will be open, but outside of which it is automatically closed.

The block doesn't explicitly use the =  assignment operator to set the opened_file  variable, but it still gives opened_file  the
same value as before.

Our final program would look like this:

import csv 

with open("grocery_list.csv", "r") as opened_file:

    reader = csv.reader(opened_file)

for row in reader:

print(row)

Try Now:

Below is an example grocery list and the Python code we just wrote. Save them into the same directory, and run
read.py  to see the printed list output. Experiment with what happens if you add more columns to the CSV file.11

grocery_list.csv

read.py

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

22 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_10
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_10
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_10
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_11
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_11
https://smatz.mit.edu/6s090/week4/readings#catsoop_footnote_11
https://smatz.mit.edu/_static/6s090/week4/readings/grocery_list.csv
https://smatz.mit.edu/_static/6s090/week4/readings/grocery_list.csv
https://smatz.mit.edu/_static/6s090/week4/readings/read.py
https://smatz.mit.edu/_static/6s090/week4/readings/read.py
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

What do you expect to be printed if we run the following code, which just repeats the printing for loop? Try it and
check.

import csv 

with open("grocery_list.csv", "r") as opened_file:

    reader = csv.reader(opened_file)

for row in reader:

print(row)

for row in reader:

print(row)

Show/Hide

The reason you get this unexpected result is subtle. The relevant mental model is that the reader
object is a sort of one-directional pointer inside the file. That is, it starts at the beginning of the file
when you open it, and it advances forward row by row when it is looped over, but it does not
automatically go back to the beginning. If you wish to use data in a file multiple times, a good approach
is to store the data from the reader into a variable (likely a list or other sequence) just once, then
manipulate the data stored in that variable, instead of going back to the file directly to get the data
again:

import csv 

data_rows = []

with open("grocery_list.csv", "r") as opened_file:

    reader = csv.reader(opened_file)

for row in reader:

        data_rows.append(row)

# Can now use data_rows multiple times

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

23 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

As an exercise, try to write code that will read in the grocery_list.csv file and create a dictionary that maps the name
of the item to the integer quantity of the item (not including the first row).

Show/Hide

This can be accomplished with the following code:

import csv 

groceries = {}

with open("grocery_list.csv", "r") as opened_file:

    csv_reader = csv.reader(opened_file)

for row in csv_reader:

if row[1] != "Quantity":

            groceries[row[0]] = int(row[1]) 

# note all values are read as strings. If we want a value we 

# read to be treated as a number, we need to cast it to an

# int or a float!

print(groceries)

Now let's say we wanted to add something to our grocery list, like oranges. While we could append this to our data_rows  while
running our program, this would not actually change the grocery_list.csv file. Luckily, Python also allows us to write to files.
Check out the write.py file below, which does just that:

import csv 

data_rows = []

with open("grocery_list.csv", "r") as opened_file:

    reader = csv.reader(opened_file)

for row in reader:

        data_rows.append(row)

data_rows.append(['Oranges', 3])

# make a new grocery list file

with open('new_grocery_list.csv', 'w', newline='') as csvfile:

    writer = csv.writer(csvfile, delimiter=',')

for row in data_rows:

        writer.writerow(row)

Note how when we make the new grocery list, we opened the file in 'w' or write mode. Instead of using the csv library to read
the file, now we create an object that can write individual rows one at a time. Note that each row is a lists of values, where each

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

24 of 26 6/30/2023, 12:08 PM

https://smatz.mit.edu/_static/6s090/week4/readings/write.py
https://smatz.mit.edu/_static/6s090/week4/readings/write.py
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


element represents the value of a single column.

For more information on the csv library, see the Python documentation.

While working with spreadsheets directly can often be useful, as we'll see in the exercises, using Python to do data analysis can
allow us to more easily analyze large amounts of data, especially when it is in a raw or unprocessed format.

11) Summary

In this reading, we (mainly) introduced functions. Importantly, we also talked about defining new functions of your own creation
as a means of abstracting away details of a particular computation so that it can be reused. We spent a good deal of time and
effort focusing on how defining and calling these functions fits in to our mental models of Python (substitution model and
environment diagrams). In unit 5, we'll solidify this understanding of functions further, with more examples, and we'll introduce
some more related function features.

In this set of exercises, you will get more practice with simulating the evaluation of functions and with defining functions of your
own. You will also get the chance to practice using string-formatting and reading and writing files, which is useful for data
analysis and processing, among other things.

Next Exercise: Fun with Functions

Back to exercises

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

25 of 26 6/30/2023, 12:08 PM

https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://smatz.mit.edu/6s090/week4/fun
https://smatz.mit.edu/6s090/week4/fun
https://smatz.mit.edu/6s090/week4
https://smatz.mit.edu/6s090/week4
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Footnotes

1 In fact, with the subset of Python we have learned so far, it is possible to prove that we have everything we need to solve any
problem that can be solved via computation! It's a little bit dense, but the Wikipedia article for Turing Completeness can provide
small window into this area of computer science theory (called computability theory).

2 Some would say "invoke" the function, and we may use both terms interchangeably here

3 or, interchangeably, a parameter

4 In the next set of readings, we'll see that the return value of a function can even be a function itself!

5 def  is short for define, or define function, depending on whom you ask.

6 In this case, because maximum  was defined inside the global frame, the parent pointer of this new frame will point to the global
frame. But because it is possible for functions to be defined inside of functions, this "parent" of this new frame will not
necessarily be the global frame. Specifically, it will be the frame in which the function being called was defined.

7 And, as before, if this cleanup results in any objects in memory not having any pointers left to them, they would be garbage
collected.

8  Note this section was adapted from 6.101's readings

9 If the files were not in the same directory, we may need to give a lengthier absolute path to the grocery_list.csv file, so Python
knew where to look for it.

10 Some of those reasons: there could be limits on the number of files you can open at a time, opened files might not be
accessible elsewhere, file changes (if we were writing, not reading) might not go into effect until the file is closed, open files can
slow down your program, and it's just cleaner programming.

11 Note this is not my actual grocery list; this part of the reading was written by a previous instructor.

Back to Top

6.s090 https://smatz.mit.edu/6s090/week4/readings#_why_functions

26 of 26 6/30/2023, 12:08 PM

https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Turing_completeness
https://py.mit.edu/spring23/readings/functions
https://py.mit.edu/spring23/readings/functions
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090/week4/readings#tableofcontents
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

