
Readings for Unit 2

Licensing Information

The readings for 6.S090 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. You are free to make and share verbatim copies (or modified versions) under the terms of that license.

Portions of these readings were modified or copied verbatim from the very nice book Think Python 2e by Allen Downey.

PDF of these readings also available to download: reading2.pdf

Table of Contents

• 1) Introduction
• 2) Strings

◦ 2.1) Arithmetic Operations on Strings
◦ 2.2) String Boolean Comparisons
◦ 2.3) String Methods: upper , lower , and replace
◦ 2.4) Converting Between Types

• 3) Strings Are Sequences
◦ 3.1) Indexing

• 4) Other Sequences
◦ 4.1) Tuples
◦ 4.2) Lists and Mutability
◦ 4.3) Adding Items to a List
◦ 4.4) Other Common Sequence Operations

• 5) Iteration
◦ 5.1) While Loops
◦ 5.2) Infinite Loops
◦ 5.3) For loops
◦ 5.4) Looping Over Integers Using range
◦ 5.5) When to use for  vs while?
◦ 5.6) While Example: Approximating Square Roots
◦ 5.7) For Example: Creating a list of squares
◦ 5.8) Nested Loops

• 6) Debugging
• 7) Summary

1) Introduction

In the last set of readings, we introduced several types of Python objects, as well as models of how Python evaluates expressions
and how it manages storing and looking up variables. We also introduced our first means of controlling the order of the
evaluation of statements in a program through conditional execution and showed how we could re-use code by defining and
calling functions.

In this reading, we will introduce and explore some new types of Python objects, and we'll see how to fit these new types into

6.s090 https://smatz.mit.edu/6s090/week2/readings

1 of 42 6/16/2023, 11:50 AM

https://catsoop.org/
https://catsoop.org/
https://www.fsf.org/about/what-is-free-software
https://www.fsf.org/about/what-is-free-software
https://smatz.mit.edu/_util/license
https://smatz.mit.edu/_util/license
https://smatz.mit.edu/_util/source.zip
https://smatz.mit.edu/_util/source.zip
https://smatz.mit.edu/_util/jslicense.html
https://smatz.mit.edu/_util/jslicense.html
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://greenteapress.com/wp/think-python-2e/
http://greenteapress.com/wp/think-python-2e/
http://greenteapress.com/wp/think-python-2e/
http://www.allendowney.com/wp/
http://www.allendowney.com/wp/
https://smatz.mit.edu/_static/6s090/week2/readings/6.s090_reading2.pdf
https://smatz.mit.edu/_static/6s090/week2/readings/6.s090_reading2.pdf
https://smatz.mit.edu/6s090/week2/readings#_introduction
https://smatz.mit.edu/6s090/week2/readings#_introduction
https://smatz.mit.edu/6s090/week2/readings#_strings
https://smatz.mit.edu/6s090/week2/readings#_strings
https://smatz.mit.edu/6s090/week2/readings#_arithmetic_operations_on_strings
https://smatz.mit.edu/6s090/week2/readings#_arithmetic_operations_on_strings
https://smatz.mit.edu/6s090/week2/readings#_string_boolean_comparisons
https://smatz.mit.edu/6s090/week2/readings#_string_boolean_comparisons
https://smatz.mit.edu/6s090/week2/readings#_string_methods_upper_lower_and_replace
https://smatz.mit.edu/6s090/week2/readings#_string_methods_upper_lower_and_replace
https://smatz.mit.edu/6s090/week2/readings#_string_methods_upper_lower_and_replace
https://smatz.mit.edu/6s090/week2/readings#_string_methods_upper_lower_and_replace
https://smatz.mit.edu/6s090/week2/readings#_string_methods_upper_lower_and_replace
https://smatz.mit.edu/6s090/week2/readings#_string_methods_upper_lower_and_replace
https://smatz.mit.edu/6s090/week2/readings#_string_methods_upper_lower_and_replace
https://smatz.mit.edu/6s090/week2/readings#_string_methods_upper_lower_and_replace
https://smatz.mit.edu/6s090/week2/readings#_string_methods_upper_lower_and_replace
https://smatz.mit.edu/6s090/week2/readings#_string_methods_upper_lower_and_replace
https://smatz.mit.edu/6s090/week2/readings#_converting_between_types
https://smatz.mit.edu/6s090/week2/readings#_converting_between_types
https://smatz.mit.edu/6s090/week2/readings#_strings_are_sequences
https://smatz.mit.edu/6s090/week2/readings#_strings_are_sequences
https://smatz.mit.edu/6s090/week2/readings#_indexing
https://smatz.mit.edu/6s090/week2/readings#_indexing
https://smatz.mit.edu/6s090/week2/readings#_other_sequences
https://smatz.mit.edu/6s090/week2/readings#_other_sequences
https://smatz.mit.edu/6s090/week2/readings#_tuples
https://smatz.mit.edu/6s090/week2/readings#_tuples
https://smatz.mit.edu/6s090/week2/readings#_lists_and_mutability
https://smatz.mit.edu/6s090/week2/readings#_lists_and_mutability
https://smatz.mit.edu/6s090/week2/readings#_adding_items_to_a_list
https://smatz.mit.edu/6s090/week2/readings#_adding_items_to_a_list
https://smatz.mit.edu/6s090/week2/readings#_other_common_sequence_operations
https://smatz.mit.edu/6s090/week2/readings#_other_common_sequence_operations
https://smatz.mit.edu/6s090/week2/readings#_iteration
https://smatz.mit.edu/6s090/week2/readings#_iteration
https://smatz.mit.edu/6s090/week2/readings#_while_loops
https://smatz.mit.edu/6s090/week2/readings#_while_loops
https://smatz.mit.edu/6s090/week2/readings#_infinite_loops
https://smatz.mit.edu/6s090/week2/readings#_infinite_loops
https://smatz.mit.edu/6s090/week2/readings#_for_loops
https://smatz.mit.edu/6s090/week2/readings#_for_loops
https://smatz.mit.edu/6s090/week2/readings#_looping_over_integers_using_range
https://smatz.mit.edu/6s090/week2/readings#_looping_over_integers_using_range
https://smatz.mit.edu/6s090/week2/readings#_looping_over_integers_using_range
https://smatz.mit.edu/6s090/week2/readings#_looping_over_integers_using_range
https://smatz.mit.edu/6s090/week2/readings#_when_to_use_for_vs_while
https://smatz.mit.edu/6s090/week2/readings#_when_to_use_for_vs_while
https://smatz.mit.edu/6s090/week2/readings#_when_to_use_for_vs_while
https://smatz.mit.edu/6s090/week2/readings#_when_to_use_for_vs_while
https://smatz.mit.edu/6s090/week2/readings#_when_to_use_for_vs_while
https://smatz.mit.edu/6s090/week2/readings#_when_to_use_for_vs_while
https://smatz.mit.edu/6s090/week2/readings#_when_to_use_for_vs_while
https://smatz.mit.edu/6s090/week2/readings#_when_to_use_for_vs_while
https://smatz.mit.edu/6s090/week2/readings#_while_example_approximating_square_roots
https://smatz.mit.edu/6s090/week2/readings#_while_example_approximating_square_roots
https://smatz.mit.edu/6s090/week2/readings#_for_example_creating_a_list_of_squares
https://smatz.mit.edu/6s090/week2/readings#_for_example_creating_a_list_of_squares
https://smatz.mit.edu/6s090/week2/readings#_nested_loops
https://smatz.mit.edu/6s090/week2/readings#_nested_loops
https://smatz.mit.edu/6s090/week2/readings#_debugging
https://smatz.mit.edu/6s090/week2/readings#_debugging
https://smatz.mit.edu/6s090/week2/readings#_summary
https://smatz.mit.edu/6s090/week2/readings#_summary
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


our existing framework. We'll also introduce some very powerful new control flow mechanisms.

Before you dive into this assignment's new material, you may wish to review some of the readings and exercises from last week
(and, in particular, check the results of the manual grading, including my comments which you can see on the individual
assignment pages, if you have not yet.) Almost everything introduced in this reading will build on ideas from the last one.

2) Strings

In the last set of readings, we saw that we could display characters to the screen verbatim by enclosing them in quotation marks
in a print statement. For example, running the code below will display hello, python!  on the screen:

print("hello, python!")

But at the time, we didn't talk much about what this statement actually meant in terms of our mental model of Python. In this
section, we'll start to clarify this a bit by introducing a new Python type into our mental model: strings.

A string is a type that represents a sequence of characters1. In Python, this type is given the name str . It turns out, also, that it is

fine to use either double quotes (" ) or single quotes (' ) to enclose strings.2 So the Python expression "yarn"  evaluates to a
string, and so does 'twine' .

Because strings are actually a type of Python object, it turns out that we can do more than just print them! We can, for example,
store a string in a variable:

nice = "This is a nice string."

We can think of this the same way we thought of other variable assignments:

• Python will start by evaluating the value on the right side of the =  symbol (which, in this case, results in a string).
• It will then store this string in memory, and associate the name nice  with it.

Much like we did with int  and float  objects, we can denote strings in our environment diagrams by simply writing their value,
though it may be a good idea also to draw a box around a string so that it's clear that it is a single object. Running the above
code snippet, for example, would result in the following environment diagram:3

Once we have the string stored in a variable, we can include the variable in other expressions. For example, after making the
definition above, we could print that string with:

6.s090 https://smatz.mit.edu/6s090/week2/readings

2 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_1
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_1
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_1
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_2
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_2
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_2
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_3
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_3
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_3
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


print(nice)

This will look up the variable name nice  in the global frame; doing so, it finds the string that is stored in memory, which it then
displays.

Try Now:

Consider the following two small programs:

The first program reads:

favorite_animal = "dog"

favorite_language = "python"

print(favorite_animal)

print(favorite_language)

and the second reads:

favorite_animal = "dog"

favorite_language = "python"

print("favorite_animal")

print("favorite_language")

Take a close look at these programs. Syntactically, what is the difference between these two programs? How does
this change affect the meaning of the program? Predict what each program will print. Then type each one into
Python and run them. Do the results match your predictions?

Show/Hide

Syntactically, the only difference between the two programs is that, inside of the print statement, the
second program has "favorite_animal"  and "favorite_language"  (with quotation marks), whereas
the first program does not have them enclosed in quotation marks.

Semantically, the first program will look up the variables called favorite_animal  and
favorite_language , and print the values stored in them. By contrast, the second will print the values
"favorite_animal"  and "favorite_language" , literally, to the screen.

2.1) Arithmetic Operations on Strings

We saw in the last set of readings that the type of an object is important for determining the kinds of operations we can perform
on that object. For example, we could perform arithmetic with int  and float  objects, but not so with NoneType  objects.
Similarly, we can perform some kinds of operations on strings. Specifically, we can concatenate (combine) two strings together
using the +  operator and we can copy / repeat a string by using the *  operator with an integer.

6.s090 https://smatz.mit.edu/6s090/week2/readings

3 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

Try running the following in Python:

print("I'm adding this string" + "to this string")

What value is printed? Try adding some more strings together to figure out exactly what the +  operator does when
its operands are strings.

Show/Hide

The +  operator on strings defines concatenation, which is the act of joining two strings together end-
to-end. The result of this operation is a new string which contains all of the characters in the first string,
followed by all of the characters in the second.

6.s090 https://smatz.mit.edu/6s090/week2/readings

4 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

Draw an environment diagram that shows the result of running the following short program, and predict what it
will print:

x = "snow"

y = "ball"

z = x + y

x = "basket" + y

print(z + " " + x)  # the middle string contains a single "space" character

Show/Hide

After executing the first line, we have the object "snow"  in memory, and the name x  associated with it:

After the following line, we have a second object, "ball" , in memory, and the name y  associated with
it:

In the process of evaluating the third statement, Python looks up x  (finding "snow" ) and y  (finding
"ball" ), and concatenates them to form a new string, "snowball" . This object is stored in memory,
and the name z  is associated with it:

Next, we replace the definition of x  with the result of evaluating "basket" + y . This evaluation gives us
the new string "basketball" , which we then associate with x . After we do this, there are no references
left to our original "snow"  object, so it is garbage collected, giving us the following final diagram:

6.s090 https://smatz.mit.edu/6s090/week2/readings

5 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


The final line contains a print statement, and we can use our substitution model to determine the value
that is printed:

• z + " " + x  (Loading z  gives us...)
• "snowball" + " " + x  (Concatenating the first two terms gives us...)
• "snowball " + x  (Loading x  gives us...)
• "snowball " + "basketball"  (Concatenating these two strings gives us...)
• "snowball basketball"

And so the value that is printed is "snowball basketball" .

6.s090 https://smatz.mit.edu/6s090/week2/readings

6 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

Try to predict whether the following expressions will evaluate without errors, and, if so, try to predict the value and
type that results from evaluating each. Then, type them into Python to check yourself. If Python generates an error
message for any of these, read it carefully and try to figure out what it means and why it happened.

• 6 + 6.0

• "6" + "6.0"

• 6 + "6.0"

• 6 + "6"

Show/Hide

• 6 + 6.0  will evaluate to a float  with value 12.0
• "6" + "6.0"  will evaluate to a str  with value 66.0  (remember that Python uses concatenation

for the +  operator applied to strings!)
• 6 + "6.0"  will result in a TypeError , since Python does not know how to add an int  to a str

(Python is not clever enough to figure out that the person writing this expression probably wanted
12.0  as a result)

• 6 + "6"  will also result in a TypeError  for the same reason.

We got some drastically different results for the above expressions! As we saw last week, it's really
important to keep track not only of the values of the objects we're working with, but of their types as
well, since the type of the object is what defines the operations that are valid.

This also serves as a reinforcing reminder that Python is not clever about trying to figure out what we
mean, and so we have to tell it things very literally and carefully.

6.s090 https://smatz.mit.edu/6s090/week2/readings

7 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

Now let's look at the *  operator. Try running the following code in Python:

print("cat" * 20)

What is the result? What does the *  operator do when the first argument is a string and the second is an integer?

Show/Hide

The *  operator concatenates copies of the same string (the result of the evaluating "cat" * 20  is
"catcatcatcatcatcatcatcatcatcatcatcatcatcatcatcatcatcatcatcat" ).

What happens if the second argument is not an int , but a float  (i.e., "cat" * 20.0 )? A NoneType  (i.e., "cat" *
None )? A str  (i.e., "cat" * "dog" )? What happens if you change the order of the operands (i.e., 20 * "cat" )?

Show/Hide

Changing the order of the operands (i.e, 5 * "cat" ) is perfectly okay (just like with numbers, the *
operator is commutative, so we get the same result as above).

All of the other changes (replacing 20  with a float , a NoneType , or a str ) give us an error message
like the following:

TypeError: can't multiply sequence by non-int of type 'float'

With that message, Python is telling us that it does not know how to handle those kinds of
multiplications, and rightly so! It's not clear what those expressions would mean...

2.2) String Boolean Comparisons

In last week's reading, we saw how Python can use the boolean operators we've discussed (!=, ==, >=, <=, >, < ) to compare
numbers with each other (and combining / comparing int  objects with float  objects tends to work as we would expect), but
it's important to note that in Python strings can only be combined / compared with numbers under certain circumstances.

6.s090 https://smatz.mit.edu/6s090/week2/readings

8 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

Try to predict whether the following expressions will evaluate without errors, and, if so, try to predict the value and
type that results from evaluating each. Then, type them into Python to check yourself. If Python generates an error
message for any of these, read it carefully and try to figure out what it means and why it happened.

• 6 == 6

• 6 == 6.0

• 6 > 6.0

• "6" == 6

• "6" > 6

• "6" != "6.0"

• 6.0 == "6.0"

• "hi" == "hi"

• "apple" <= "banana"

• "A" == "a"

• "abcDe" < "abcda"

Show/Hide

• 6 == 6  will evaluate to a bool  with value True , since the two operands are equal.
• 6 == 6.0  will evaluate to a bool  with value True , since the two operands are equal (Python

knows how to compare across this particular type boundary, since int  and float  are so similar).
• "6" == 6  will evaluate to a bool  with value False , since one argument is a string of characters

and the other is a number. Even though the string contains something that could be interpreted
as a number, to Python, it is not a number (it is just a sequence of characters!).

• "6" > 6  will result in the following error: TypeError: '>' not supported between instances
of 'str' and 'int' . Strings and numbers can only be compared with the ==  and !=  operators.
In general, Python can check if two objects with different types are equal using ==  or check if they
are not equal using != , but it usually will raise an error if you try to perform the other
comparisons (< , > , >= , <= ).

• "6" != "6.0"  will evaluate to a bool  with value True . !=  on strings will evaluate to True  if and
only if the two strings do not contain exactly the same characters.

• 6.0 == "6.0"  will evaluate to a bool  with value False , since one argument is a string and the
other is a number.

• "hi" == "hi"  will evaluate to a bool  with value True . ==  on strings will evaluate to True  if and
only if the two strings contain exactly the same characters.

• "apple" < "banana"  will evaluate to a bool  with value True . The comparison operators < , > ,
>= , <=  can compare two strings in terms of alphabetic order (however as we will see in a moment
case matters).

• "A" == "a"  will evaluate to a bool  with value False . Python considers upper / lowercase
versions of the same letter as different characters. Each character in Python is represented as a
number. You can check what number is associated with a character using the ord  function. For
example ord("A")  returns 65  while ord("a")  returns 97 , meaning that to Python "A" < "a" .
Because of this, it is important to be careful when comparing strings, especially when they include
punctuation or mix upper- and lower-case letters.

• "abcDe" < "abcda"  will evaluate to a bool  with value True . While the first three characters in
the string are equal, the fourth character "D" < "d"  which makes the expression evaluate to

6.s090 https://smatz.mit.edu/6s090/week2/readings

9 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


True  (and the fifth character is ignored).

2.3) String Methods: upper , lower , and replace

In addition to the +  and *  operators, python has many more useful string methods. A few functions to note are:

.upper() : Returns a new copy of the string with all the cased characters converted to uppercase.4

For example:

>>> 'hello123'.upper()

'HELLO123'

>>> 'this is too LOUD!'.upper()

'THIS IS TOO LOUD!'

.lower() : Returns a new copy of the string with all the cased characters converted to lowercase.

For example:

>>> 'NO CAPS?'.lower()

'no caps?'

>>> "WHAT??? WHY aren't HATS allowed?1?".lower()

"what??? why aren't hats allowed?1?"'

.replace(old, new[, count]) : Return a new copy of the string with all occurrences of substring old replaced by new. If the
optional argument count is given, only the first count occurrences are replaced.

For example:

>>> "jar jar".replace("j", "c")

'car car'

>>> "cheese".replace("e", "o", 2)

'choose'

There are many more useful string methods described in the python documentation!

2.4) Converting Between Types

In the last set of readings, we saw that we could convert between int  and float  objects (for example, with int(7.8)  or
float(6) ).

It is also possible to convert between strings and numeric types, provided we are dealing with strings in a particular form. For
example:

• str(6.0)  will give us the string "6.0" .
• int("2")  will give us the integer 2 .

6.s090 https://smatz.mit.edu/6s090/week2/readings

10 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_4
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_4
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_4
https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/library/stdtypes.html#string-methods
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


• float("7.8")  will give us the float 7.8 .

Try Now:

What happens if you try to convert other values to integers and floats? Try, for example, the following:

• int("tomato")

• int("7.8")

• float("6")

Show/Hide

The first two expressions produce errors, because Python does not know how to interpret, for example,
"tomato"  as an integer or the string "7.8"  as an integer. However, it is able to interpret the string "6"
as a float: it is the float with value "6.0" .

3) Strings Are Sequences

Strings are an example of a compound type: they are sequences of characters. Sequences in Python have a number of interesting
operations associated with them. We'll start by exploring these in the context of strings, and then generalize to other kinds of
sequences.

3.1) Indexing

You can ask Python for one character from a string with the bracket operator. For example, try the following:

fruit = "banana"

letter = fruit[1]

print(letter)

The second statement selects character number 1 from fruit , stores it in memory, and associates the name letter  with it. The
expression inside the brackets (in this case, 1 ) is called an index. The index, which must be an integer, indicates which character
in the sequence you want.

But, running the code above, you might not get the answer you expect!

Try Now:

Run the above code in Python, note the result (which is perhaps surprising!) and continue reading.

Most people would expect character one from "banana"  to be "b" . But in Python (as in many programming languages), we

actually start counting at 0 rather than at 15.

So the indices from 0 to 5 are associated with the letters in this string as shown below:

6.s090 https://smatz.mit.edu/6s090/week2/readings

11 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_5
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_5
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_5
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


It is perhaps also worth noting that you can also index from the end of a string. The index -1  is associated with the last
character in a string, -2  with the next to last, and so on. So we really have two indices associated with each character:

Trying to access an index other than one of those numbers (in this case, integers between -6  and 5 , inclusive) results in an
error.

Try Now:

Try to predict whether each of the following expressions will evaluate without error, and, if so, try to predict the
value of each. Once you have made your guesses, print them in Python to verify. If Python generates an error
message for any of these, read it carefully and try to figure out what it means and why it happened.

• "cat"[0]

• "ferret"[5]

• "cow"[1] == 'horse'[-4]

• int("60.0"[-4])

• 'hamster'[7]

• "tomato"[-4]

Show/Hide

• "cat"[0]  will evaluate to the string "c" , since "c"  is the character in position 0 in the string.
• "ferret"[5]  will evaluate to the string "t" , since "t"  is the character in position 5 in the string

("ferret"[-1] ) would also have been "t" ).
• "cow"[1] == 'horse'[-4]  will evaluate to the bool True . "cow[1]"  evaluates to "o" , and so

does 'horse'[-4] . So in the end, we compare "o" == "o" , which evaluates to True .
• int("60.0"[-4])  will evaluate to the int 6 . "60.0"[-4]  is the string "6" , which we then convert

to an integer.
• 'hamster'[7]  will result in a new kind of error, an IndexError . The message says: string index
out of range , which is Python's way of trying to tell us that 7  is not a valid index into the string
'hamster' .

• "tomato"[-4]  will evaluate to the string 'm' , since that is the character in position -4 .

6.s090 https://smatz.mit.edu/6s090/week2/readings

12 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


4) Other Sequences

We will now introduce two more incredibly useful types of sequences: tuples6 and lists.

4.1) Tuples

Tuples are sequences like strings, with the important distinction that, while strings are limited to containing only characters,
tuples can contain arbitrary objects, such as integers, floats, Booleans, None , or even other tuples!

A tuple is specified as a comma-separated sequence of arbitrary objects, usually wrapped in parentheses. For example, the
following is a tuple containing three different objects:

x = (7, -7.8, "blue")

We can perform many of the same operations on tuples that we could on strings.
For example:

• we can index into a tuple (x[1]  gives us -7.8 )
• we can use +  to concatenate two tuples (x + (1, 2, 3)  gives us (7, -7.8, "blue", 1, 2, 3) )

Try Now:

Try out some of these operations on the example tuple above, or with some tuples of your own construction.

We also need a way to represent tuples in our environment diagrams, to model how Python actually handles them in memory.
We will model the above tuple (7, -7.8, "blue")  with the following kind of drawing:

We'll draw it as a box, with the label "tuple" (so that we can keep track of types), with several references to other objects. You
can think of these references as being very similar to the mappings we have already considered, from names to objects.

So after evaluating the line of code above (x = (7, -7.8, "blue") ), we will have the following environment diagram:

Let's examine what happens when we index into x . Consider, for example, running the following code:

6.s090 https://smatz.mit.edu/6s090/week2/readings

13 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_6
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_6
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_6
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


print(x[-1])

Python first looks up x  in the global frame. Doing so, it follows the pointer from x  and finds the tuple object in memory. Then,
it looks up index -1  inside of x . This is the last "slot" in x , and so, following that pointer, we find the string "blue" .

Notice here that x[-1]  is still a string, and so anything we can do to any other string, we can do to x[-1] . This includes
indexing into it! So we could try the following:

print(x[-1][2])

When evaluating x[-1][2] , Python will first look up x  (finding the tuple in memory). Then it will look up index -1  inside of that
tuple (finding the string "blue" ). Finally, it will look up index 2  of that string (finding "u" ). So this line above with print a u  to
the screen.

6.s090 https://smatz.mit.edu/6s090/week2/readings

14 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

Try drawing an environment diagram for the following code:

a = 1

b = 2

c = 3

x = (c, b, a)

y = (3, 2, 1)

What is different about how the two tuples are represented in memory?

Show/Hide

After executing the first three lines, our environment diagram looks like this:

Then, when creating the first tuple, Python figures out what objects are associated with the locations in
the tuple by looking up a , b , and c . As such, the entries in the tuple point to the same integer objects
as a , b , and c :

However, when creating the second tuple, Python figures out what objects are associated with the
locations in the tuple by evaluating 1 , 2 , and 3 . As such, the entries in the tuple point to different
integer objects:

6.s090 https://smatz.mit.edu/6s090/week2/readings

15 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

Note that tuples can contain any kind of Python object, including other tuples. So we could have had our last line
instead say: y = (3, 2, x) . How would the final environment diagram differ if we made this change?

Show/Hide

Here is the resulting environment diagram (notice that the only change is that the last location in the y
tuple points to the same tuple as x ):

If we had executed this code, how would Python evaluate y[2][0]?

Show/Hide

Python would start by evaluating y  and finding a tuple. It would then look up index 2  in that tuple,
finding the other tuple, where it then looks up index 0 , finding value 3  (the same 3  that is associated
with variable c ).

4.2) Lists and Mutability

The last type of sequence we will introduce today is one of the most useful built-in types, the list. Lists are almost the same as
tuples, with one exception that has big potential consequences.

Like strings or tuples, lists are sequences. Like tuples, lists can contain arbitrary Python objects. Unlike strings or tuples, however,
lists are mutable; this means that they can be changed after they are created. In this section, we'll examine the effects of this
difference.

The syntax for creating lists is similar to the syntax used for creating tuples, except that it uses square brackets instead of round
brackets.

For example, we can create some lists as follows:

dogs = ['Lab', 'Boxer', 'Poodle']

6.s090 https://smatz.mit.edu/6s090/week2/readings

16 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


numbers = [42, 123]

another_list = [7, 12, 10]

empty = []  # we can also make a list that contains no elements!

We will represent lists in environment diagrams similarly to how we represented tuples, but we will mark them clearly as lists. For
example:

With a tuple, we would get an error on the last line below:

my_tuple = (1,2,3)

print(my_tuple[0]) # looking up elements is fine -- no error yet

my_tuple[0] = 12

Specifically, we would see the error message: TypeError: 'tuple' object does not support item assignment .

However, if we used a list instead, we could modify the elements contained in the list!

Try Now:

Try running the following code:

dogs = ['Lab', 'Boxer', 'Poodle']

dogs[2] = 'Pincher'

print(dogs)

What does Python print when it executes this code?

Show/Hide

Importantly, the second line changes the value to which dogs[2]  points (so that it now points to the
string 'Pincher'  instead of to the string 'Poodle' ). So when we print dogs , we see:

['Lab', 'Boxer', 'Pincher']

6.s090 https://smatz.mit.edu/6s090/week2/readings

17 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

Draw an environment diagram for the following code, and predict what will be displayed to the screen when the
following program is run. Run your code to verify; the results may be surprising!

a = [7, 12, 10]

b = [4, 5, 6]

c = a

print(a)

a[0] = 8

print(a)

print(b)

b[-1] = "cow"

print(b)

print(a)

c[1] = 3.14

print(a)

Show/Hide

After the first two lines are executed, our environment diagram should look like this:

Then, importantly, when we run the next line (c = a ), the names c  and a  both refer to the exact same
list object in memory (this does not make a copy of the list), as indicated below:

Then we print a , which will print the current value of a , which is [7, 12, 10] . The next line changes
the value to which a[0]  points, so we are left with:

6.s090 https://smatz.mit.edu/6s090/week2/readings

18 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Then we print a  again, which will print the updated value of a , which is [8, 12, 10] . Then we print b ,
which will print the current value of b , which is [4, 5, 6] . The next line changes the value to which
b[-1]  points, so we are left with:

Then we print b  again, which will print the updated value of b , which is [4, 5, "cow"] . Then we print
a , which will print the current value of a , which is [8, 12, 10] . The next line changes the value to
which c[1]  points, so we are left with the following:

Importantly, because a  and c  are both associated with the same list in memory, looking up a  will also
see the updated value! So when we print a , we see [8, 3.14, 10 ] In the end, the whole program
printed the following:

[7, 12, 10]

[8, 12, 10]

[4, 5, 6]

[4, 5, "cow"]

[8, 12, 10]

[8, 3.14, 10]

4.3) Adding Items to a List

Another common way to mutate a list is not by changing one of the elements in a list, but adding a new element to the end of
the list. This is accomplished via append . For example:7

x = [5, 8, 3, 2, 1]

print(x)

6.s090 https://smatz.mit.edu/6s090/week2/readings

19 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_7
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_7
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_7
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


x.append(7)

print(x)

This will print:

[5, 8, 3, 2, 1]

[5, 8, 3, 2, 1, 7]

Note that, concatenating two lists together like [1, 2, 3] + [4]  creates a new list [1, 2, 3, 4]  without changing the
previous lists. Using the append  method actually modifies the list in memory with which x  is already associated. Although we
sometimes have to be careful with it (because of the kinds of issues we saw above), modifying an existing list in memory is
almost always substantially faster than making a new list via concatenation.

Because lists can contain arbitrary Python objects, we could use append  to add any object to a list.

x.append("a string!")

x.append((7, 8, 9)) # a tuple

6.s090 https://smatz.mit.edu/6s090/week2/readings

20 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

What will be printed after the following piece of code is executed?

a = [1]

b = a

a.append(6)

a.append(2.0)

a.append("cat")

a[1] = "wolf"

a.append([2])

a = [4]

print(a)

print(b)

Show/Hide

The end result is that the following two values are printed:

[4]

[1, 'wolf', 2.0, 'cat', [2]]

In order to see why this is the case, let's simulate using an environment diagram. The first line creates a
list containing a single element, a 1 , and associates the name a  with it:

The next line associates the name b  with the same list in memory.

Python then looks up a  and modifies the list by appending a 6  to it. Note that, because a  and b  are

6.s090 https://smatz.mit.edu/6s090/week2/readings

21 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


two different names for the same object in memory, the value associated with b  is also changing!

Then we append 2.0  to the same list:

Then we append the string "cat" :

The next line then replaces the element at index 1  in the list with "wolf" :

The next line then appends a list containing the number 2  to the list associated with the name a .
(Notice here is an example of a list contained within another list.)

6.s090 https://smatz.mit.edu/6s090/week2/readings

22 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Next, we reassign a  to be associated with a list containing a single 4 . Note that this did not change
the binding of b , which is still associated with the original list.

So then when we print a , Python follows its pointer and finds not the original list, but the new single-
element list, and so it prints [4] . When we print b , Python follows its pointer and finds our long,
modified list (despite the fact that we never explicitly told Python to do anything with b ).

4.4) Other Common Sequence Operations

While strings, tuples, and lists have unique properties (strings only contain characters and are immutable, tuples can contain any
object but are immutable, lists can contain any object and are mutable), by design they also share many similar properties (they
are all ordered collections of objects), operations, and behaviors. So far, we've seen how we can:

• index into a sequence ("hello[1]  gives us "e" , (5, -7.8)[1] gives us-7.8 , and [5, (4, 3), 2][1]  gives us (4, 3) )
• concatenate two sequences of the same type using +  (('blue',) + (1, 2, 3)  gives us ("blue", 1, 2, 3) )

But we can also:

• multiply a sequence by an int using * . For example, [0] * 3  will create a new list [0, 0, 0] .
• find the length of a sequence using len . For example, len("hello")  returns

5. 

• compare sequences to other objects using ==  or != , which will evaluate to True  if and only if both objects are the same
type and all the corresponding elements at each index within the two objects are equal (or not equal depending on the
comparison). 8

• check if a sequence contains some value using in  or not in . For example

6.s090 https://smatz.mit.edu/6s090/week2/readings

23 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_8
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_8
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_8
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


>>> "h" in "horse"

True

>>> "!" not in ["a", 1, 2]

True

>>> (4, 3, 2) in (4, 3, 2)

False

Note that the in  keyword is checking each individual element, not the sequence as a whole!

• cast sequences to other types. For example, str((1,2,3))  will return the following string: '(1, 2, 3)' . We can also cast
a string to a tuple: tuple("abc")  creates the tuple ('a', 'b', 'c') . list((1, 2, 3))  creates the list: [1, 2, 3] .
Note that unlike strings, we cannot cast a float or an int to a list or tuple. Try casting a list to a string and vice versa!

• slice into sequences to create new sequences. For example:

x = ["a", "b", "c", "d", "e"]

print(x[0:2])   # ["a", "b"], equivalent to x[:2]

print(x[2:5])   # ["c", "d", "e"], equivalent to x[2:] or x[-3:]

print(x[:])     # ["a", "b", "c", "d", "e"], x[0:5] creates a copy 

print(x[100:])  # [] note that slicing out of bounds does not raise an error!

print(x[0:5:2]) # ["a", "c", "e"], equivalent to x[::2]

print(x[::-1])  # ["e", "d", "c", "b", "a"], reverse copy

Note slicing in general has a pattern of [start_index : stop_index : step]  By default, the start_index is 0, the stop_index is
the length of the sequence, and the step size is one (which is why you can omit some of the numbers and still get the same
result). A step size of 2 in the second to last example means that the element at every other index between 0 <= i < 5 will be
included (so 0, 2, 4). Try to experiment with slicing into strings and tuples!

There are other common sequence operations, which you can learn more about by reviewing the official Python documentation
here.

5) Iteration

A lot of interesting computations on sequences involve processing them one element (item) at a time. Often, they start at the
beginning, select each element in turn, do something to it, and continue to the end of the sequence. This pattern of processing
a sequence can be referred to as looping over the sequence.

For example, if I wanted to display each letter in a string one at a time, I could write something like the following:

word = 'cat'

print(word[0])

print(word[1])

print(word[2])

print("done!")

which would output:

c

a

6.s090 https://smatz.mit.edu/6s090/week2/readings

24 of 42 6/16/2023, 11:50 AM

https://docs.python.org/3/library/stdtypes.html#common-sequence-operations
https://docs.python.org/3/library/stdtypes.html#common-sequence-operations
https://docs.python.org/3/library/stdtypes.html#common-sequence-operations
https://docs.python.org/3/library/stdtypes.html#common-sequence-operations
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


t

done!

While this isn't too difficult for a short word, imagine trying to do this for a sentence, or a paragraph. This would likely involve
copy, pasting, and modifying the same line of code over and over again, which in addition to being bug-prone is also difficult to
read as well as modify.

Luckily, Python comes with some built in tools for iteration, which is the ability to run a block of statements repeatedly. In this
section, we'll explore two such looping constructs: while  loops and for  loops.

5.1) While Loops

A while  loop is a lot like a conditional, in that it consists of both a condition and a body and uses the condition to decide
whether to execute the body, or to skip it. The difference is: whereas a conditional executed the body exactly once and moved
on, a while  loop will continue executing the body until the condition no longer evaluates to True . This pattern of flow is
represented in this flow chart:

We first enter this diagram from the top. If the condition evaluates to False , then we skip the loop entirely and move on, but if
it is True , we enter the body of the loop. The difference from a regular conditional is that if we do execute the body, then once
we are done, we jump back and check the condition again (instead of moving on). If the condition is again True , we'll enter the
loop again, and so on.

Consider the following example:

n = 5

while n > 0: 

print(n)

    n = n - 1

print('Blastoff!')

Here the condition is n > 0  and the body of the while loop contains two lines that first display the value of n and then
decrement it (decrease it by one). You can almost read the while  statement as if it were English. It means "While n  is greater
than 0, display the value of n  and then decrement n . When you get to 0, display the word Blastoff! "

Slightly more formally, here is the flow of execution for a while  statement:

6.s090 https://smatz.mit.edu/6s090/week2/readings

25 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


1. Determine whether the condition is true or false.
2. If false, exit the while  statement and continue execution at the next statement.
3. If the condition is true, run the body and then go back to step 1.

As written, the program above will print:

5

4

3

2

1

Blastoff!

Try Now:

Why was 0  not printed when the program was run? How could you modify it so that it instead printed a 0  as well,
before printing blastoff?

Show/Hide

After the last execution of the body, 1  will have just been printed to the screen and n  will have just
been decremented to 0 . Python again checks whether the condition n>0  holds. It does not, so it moves
on beyond the loop (without printing 0 ).

Changing the condition to n>=0  would cause 0  to also be printed.

Try Now:

What would have been printed if we had set n = -1  instead of n = 5?

Show/Hide

If n  had been -1  when we first approached the loop, the condition would have evaluated to False  that
very first time. As such, we never would have entered the loop at all, and so only Blastoff!  would have
been printed.

What about our original problem of displaying every letter in a string? We could write it with a while loop as follows:

word = "cat"

i = 0

while i < len(word):

print(word[i])

    i = i + 1

6.s090 https://smatz.mit.edu/6s090/week2/readings

26 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


print("done!")

While this is a bit longer than our original program, it will work for arbitrary length strings (and more general programs tend to
be more useful).

5.2) Infinite Loops

It is important, when writing while  loops, to make sure that the body of the loop changes the value of one or more variables so
that the condition becomes false eventually and the loop terminates. Otherwise, the loop will repeat forever, which is called an
infinite loop.9

In the case of the countdown program, we can prove that the loop terminates: if n  is zero or negative, the loop never runs.
Otherwise, n  gets smaller each time through the loop, so eventually we have to get to 0.

Try Now:

What happens if you remove the line n = n - 1  from the countdown program or change the condition to while
True:?

For some other loops, it is not so easy to tell. For example:

n = 27

while n != 1:

print(n)

if n % 2 == 0:  # n is even

        n = n / 2

else:  # n is odd

        n = n*3 + 1

The condition for this loop is n != 1 , so the loop will continue until n  is 1 , which makes the condition False.

Each time through the loop, the program outputs the value of n  and then checks whether it is even or odd. If it is even, n  is
divided by 2. If it is odd, the value of n  is replaced with n*3 + 1 . For example, if n  starts out as 3 , the resulting values of n  are
3, 10, 5, 16, 8, 4, 2, and 1.

Since n  sometimes increases and sometimes decreases, there is no obvious proof that n  will ever reach 1, or that the program
terminates. For some particular values of n , we can prove termination. For example, if the starting value is a power of two, n  will
be even every time through the loop until it reaches 1. The previous example ends with such a sequence, starting with 16.

The hard question is whether we can prove that this program terminates for all positive values of n . So far, no one has been

able to prove it or disprove it!10

6.s090 https://smatz.mit.edu/6s090/week2/readings

27 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_9
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_9
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_9
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_10
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_10
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_10
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

What sequence of values would be printed by the above loop if we had started with n=6? Simulate by hand first,
and then use Python to test!

Show/Hide

Technically, the values that will be printed are:

6

3.0

10.0

5.0

16.0

8.0

4.0

2.0

Why are the values after the first one floats? Because the /  operator produces a float , even when its
two operands are ints!

5.3) For loops

Oftentimes, we will want to write a traversal over a sequence. While we have seen how this can be accomplished with a while
loop, we can do this much more concisely with a for  loop. To get started, let's consider the following piece of code:

word = "cat"

for letter in word:

print(letter)

print('done')

In some ways, we can read this like English: for each letter in the string "cat" , print that letter (and, after that, print the word
"done"). And that's exactly what Python will do. Running this code will produce the following output:

c

a

t

done

From a high-level perspective, we will repeat the code in the indented portion (the body) once for every element in word . Before
each repetition, the next character in the string is assigned to the variable letter . Once it has gone through all characters, it will
continue on with the rest of the program.

This is a much more complicated structure than some of the others we have looked at, so let's go through this code carefully
and keep track of how the environment diagram changes over time.

6.s090 https://smatz.mit.edu/6s090/week2/readings

28 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


After we execute the first line (word = "cat" ), we have the string "cat"  in memory, and it is associated with the name word :

Then we enter the for  loop. Before the first line in the body is executed, Python associates the first character from word  with
the name letter  (just the same as if we had done letter = word[0] ):

Then we run the loop body for the first time. In doing so, we execute print(letter) . Just like it normally would, this involves
looking up the value of letter  (which, in this case, is "c" ), and displaying that value to the screen. So when this line executes,
we see a c  show up on the screen.

Now, since we've not reached the end of word , we're going to loop again. Before we execute the body again, Python associates
the next character from word  with the name letter  (in this case, just the same as if we had done letter = word[1] ):

Then we run the loop body a second time. In doing so, we execute print(letter) . Just like before, we look up the value of
letter , but this time we get "a"  (since letter  was reassigned). So when this line executes this time, we see an a  show up on
the screen.

Now, since we've still not reached the end of word , we're going to loop again. Again, before we execute the body, Python
associates the next character from word  with the name letter  (in this case, just the same as if we had done letter =
word[2] ):

Then we run the loop body once more. In doing so, we again execute print(letter) . Just like before, we looking up the value
of letter , but this time we get "t"  (since letter  was once again reassigned). So when this line executes this time, we see a t
show up on the screen.

6.s090 https://smatz.mit.edu/6s090/week2/readings

29 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


When we are finished looping, our environment diagram still looks like this:

and we return to running the rest of the program. In this case, that just means printing 'done' . But if we had more code, we
could reference letter  (which is still bound to "t"  after exiting the loop).

Note that, as with if  statements, the body of a for  loop can contain arbitrarily many expressions (and all the indented code
will be executed each time through the loop).

Also note that the name letter  was an arbitrary choice; we could use any valid variable name there. So we could have made a
loop that behaves exactly the same as the one above as follows:

word = "cat"

for arbitrary_variable_name in word:

print(arbitrary_variable_name)

print('done')

5.4) Looping Over Integers Using range

In the sections above, we introduced the notion of looping over a sequence using the for  keyword. In a for  loop, we
performed a computation once for every element in a sequence, setting a particular variable to point to each value in turn.

Sometimes you want to loop over particular values for which constructing a sequence would be a pain. For example, consider
printing the squares of all integers from 0 to 24. One way to do this would be to write the following:

for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]:

print(i**2)

But writing out the list of values we're looping over in this case is a real pain! Conveniently, Python offers us an easier way to
build structures of this form, which we can loop over, via range . range  can be used to produce a special kind of range object,
which, while not exactly the same as a list or tuple, can serve the same purpose when used as part of a for  loop.

To do the above more compactly, we could have written:

for i in range(25):

print(i**2)

If you invoke range  with range(4) , then it will give you 4 elements, starting from 0 and counting upward. If you invoke it with
range(7) , it will instead give you seven elements. When used in this way, range  will serve the same purpose as a list containing
[0, 1, 2, 3]  or [0, 1, 2, 3, 4, 5, 6] .

6.s090 https://smatz.mit.edu/6s090/week2/readings

30 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Looping over sequence of integers is a fairly common occurrence, and so having range  available can really save us a lot of
typing (particularly if the sequence of integers you want to loop over is long!).

You can also use the range  method to loop through all the indices in a list:

my_list = [5, 3, 7]

mul_total = 0

for i in range(len(my_list)):

    mul_total += i * my_list[i]

print(mul_total) # this prints 17 because (0 * 5) + (1 * 3) + (2 * 7) 

6.s090 https://smatz.mit.edu/6s090/week2/readings

31 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

Note that like slicing, range also has a pattern of range(start_index, stop_index, step) , where start_index
is by default 0, and step  is by default 1. Try running each of the examples below to see what they will output!

for i in range(1, 4):

print(i)

Show/Hide

This program outputs:

1

2

3

Can you modify the inputs to range so that

95

96

97

98

99

100

will print instaed?

for i in range(5, 0, -1):

print(i)

Show/Hide

This program outputs:

5

4

3

2

1

Can you modify the inputs to range so that 0 is also printed?

6.s090 https://smatz.mit.edu/6s090/week2/readings

32 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


for i in range(1, 10, 2):

print(i)

Show/Hide

This program outputs:

1

3

5

7

9

Can you modify the inputs to range so that

2

6

10

is printed instead?

6.s090 https://smatz.mit.edu/6s090/week2/readings

33 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

Try to predict what the following program will print to the screen:

count = 0

word = "cow"

print('I am thinking of a nice word.')

print('How many letters does it have?')

print(len(word))

print('I will now spell the word for you.')

for i in word:

print(count)

print(i)

    count = count + 1

print('The word was:')

print(word)

print('What a nice word.')

print(count)

print(i)

Once you have a prediction, type this code into Python and run it.

Show/Hide

This code will print:

I am thinking of a nice word.

How many letters does it have?

3

I will now spell the word for you.

0

c

1

o

2

w

The word was:

cow

What a nice word.

3

w

Now try to write this program in fewer lines of code using range .

Show/Hide  One way to do this would be:

word = "cow"

6.s090 https://smatz.mit.edu/6s090/week2/readings

34 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


print('I am thinking of a nice word.')

print('How many letters does it have?')

print(len(word))

print('I will now spell the word for you.')

for count in range(len(word)):  

print(count)

print(word[count])

print('The word was:')

print(word)

print('What a nice word.')

print(count)

print(word[count])

A key insight here is that sometimes we care about both the index and the element at that index. One
way to do this with a single variable is to loop over the range of the length of the sequence, which
loops over the index values. Then you can use the index to access the element!

5.5) When to use for  vs while?

Because anything that can be written with a for loop can be written with a while loop, it can be hard to know when to use which
kind of loop. While loops have the advantage of being explicit, but for loops have the advantage of being concise, which make
them easier to read. Because for loops handle the condition and incrementing the loop automatically behind the scenes, it is
easier to avoid bugs that can result from forgetting to increment a variable or write the condition correctly. Additionally, it is a
strong convention (widely used practice) among Python programmers to use for loops wherever possible. For these reasons,
most of the time you should use a for loop, especially when iterating over a clearly defined sequence such as a range of
numbers or elements in a list.

While loops are mostly used when we do not know what particular sequence of elements we want to iterate over, or how many
times we would like to run through a loop. Sometimes, we want to repeat a sequence of statements until a particular condition is
satisfied. An example of this will be shown in the next section where we use a while loop to approximate square roots.

5.6) While Example: Approximating Square Roots

While loops are often used in programs that compute numerical results by starting with an approximate answer and iteratively
improving it.

For example, one way of computing square roots is Newton's method. Suppose that you want to know the square root of . If
you start with almost any estimate, , you can compute a better estimate with the following formula:

For example, if  is 4 and  is 3:

a

x

y =
2

x + a/x

a x

6.s090 https://smatz.mit.edu/6s090/week2/readings

35 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


a = 4

x = 3

y = (x + a/x) / 2

print(y)  # prints 2.16666666667

The result is closer to the correct answer ( ). If we repeat the process with the new estimate, it gets even closer:

x = y

y = (x + a/x) / 2

print(y)  # prints 2.00641025641

After a few more updates, the estimate is almost exact:

x = y

y = (x + a/x) / 2

print(y)  # prints 2.00001024003

x = y

y = (x + a/x) / 2

print(y)  # prints 2.00000000003

In general, we don't know ahead of time how many steps it takes to get to the right answer, but we know when we get there
because the estimate stops changing:

x = y

y = (x + a/x) / 2

print(y)  # prints 2.0

x = y

y = (x + a/x) / 2

print(y)  # prints 2.0

When y == x , we can stop. Here is a loop that starts with an initial estimate, x , and improves it until it stops changing:

a = 4

x = None

y = 2.5

while x != y:

    x = y

print(x)

    y = (x + a/x) / 2

Note: For most values of a  this works fine, but in general it is dangerous to test float  equality (for some of the reasons we
talked about in the last section, specifically that floats can't accurately represent all numbers!). Rather than checking whether x
and y  are exactly equal as above, it would be safer to loop until the difference between them of the difference between them
becomes small enough (by comparing against some small error margin, for example: while abs(x-y) > .000001: ).

=4 2

6.s090 https://smatz.mit.edu/6s090/week2/readings

36 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


5.7) For Example: Creating a list of squares

A common pattern uses append  to build up a list of values based on some other list. For example, imagine that we had a list of
integers, and we wanted to create a list of the squares of the even numbers in the original list. We could do this with, for
example, the following code:

original_list = [7, 4, 8, 2, 9]

new_list = []  # first make an empty list to hold the results

for element in original_list:  # for each number in the original list, do the following:

if element % 2 == 0:  # if the number is even...

        new_list.append(element ** 2)  # add its square to the new list

print(new_list)

This code will proceed as follows:

• After setting original_list  and new_list , Python reaches the for  loop.
• The first time through the loop, Python sets element  to 7  (the first element in original_list ) and runs the loop body.

◦ Because 7 % 2  is not equal to 0 , Python does not enter the body of the conditional; rather, it moves on.
• Now, Python reassigns element  to the next element in the list (4 ) and enters the loop body.

◦ 4 % 2 == 0  evaluates to True , so we enter the body of the conditional, where we add element ** 2  (16 ) to the
end of new_list . If we were to print new_list  now, we would see [16] .

• Python continues in the same way. It reassigns element  to the next element in the list (8 ) and enters the loop body.
◦ 8 % 2 == 0  also evaluates to True , so we enter the body of the conditional again, where we add 64  to the end of

new_list . If we were to print new_list  now, we would see [16, 64] .
• Next, Python reassigns element  to 2  (next in the list) and enters the loop body.

◦ 2 % 2 == 0  also evaluates to True , so we enter the body of the conditional again, where we add 4  to the end of
new_list . If we were to print new_list  now, we would see [16, 64, 4] .

• Next, Python reassigns element  to 9  (next in the list) and enters the loop body again.
◦ Because 9 % 2  is not equal to 0 , Python does not enter the body of the conditional; rather, it moves on.

• Now that Python has "looped over" every element in original_list , it continues on past the loop to the statement:
print(new_list) . Printing new_list  displays the following to the screen:

[16, 64, 4]

6.s090 https://smatz.mit.edu/6s090/week2/readings

37 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

Note that in general, it is a good idea to avoid adding or removing elements to a list as you are iterating over it, as
this can lead to subtle bugs or unexpected results. Consider the program below. What will happen when you run it?

letters = ["a", "b", "c"]

for letter in letters:

print(letter)

    letters.append(letter)

Show/Hide

We get an infinite loop!

a

b

c

a

b

c

# continue printing same pattern forever

Because we keep on appending to the end of the list with each iteration of the loop, we will never reach
the end of the list (eventually, the program will crash when it runs out of available memory to store this
giant list!) Try printing out the length of the list in the loop to see how quickly the list can grow!

5.8) Nested Loops

Just like you can have conditional statements within conditional statements, you can have loops inside of loops!

6.s090 https://smatz.mit.edu/6s090/week2/readings

38 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

What does the following program print?

total = 0

count = 0

nums = [[-3, 7.8, 9], [-500,100], [32, 1]]

for item in nums:

for sub in item:

        total += sub

        count += 1

print(total / count)

Show/Hide

Output:

-50.457142857142856

This program iterates through each item (each list in nums) and then through each sub-item (each
number in item) and finds the total and count of all the numbers to calculate the average of all the
numbers in the lists.

Is there a simpler way to write this program?

Show/Hide

Yes! Using python's built-in methods len and sum (which calculates the total sum of a list or tuple of
numbers) can simplify the program to a single loop. Other useful sequence methods will be in next
week's reading.

total = 0

count = 0

nums = [[-3, 7.8, 9], [-500,100], [32, 1]]

for item in nums:

    total += sum(item)

    count += len(item)

print(total / count)

6.s090 https://smatz.mit.edu/6s090/week2/readings

39 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Try Now:

What does the following program output?

my_list = [(1, 2,), True, [['inner']], None, [0], "hi", ["more", "examples"], 5, 7.5]

new_list = []

for item in my_list:

if type(item) == list or type(item) == tuple or type(item) == str:

for sub in item:

            new_list.append(sub)

else:

        new_list.append(item)

print(new_list)

Show/Hide

Output:

[1, 2, True, ['inner'], None, 0, 'h', 'i', 'more', 'examples', 5, 7.5]

This is a simple example of list 'flattening.' The if statement inside the first loop checks if the item is
iterable by checking the type before looping over the item and adding each sub-item to the new_list.
We cannot loop over primitive types like ints, bools, floats, and None, so we append those items to the
end of the new_list.

6) Debugging

In this reading, we have introduced some new structures, and started moving toward more complicated programs, which can be
more difficult to think about.
In general, we can attempt to manage this complexity by trying first to break our programs down into small pieces, which can be
written and tested independently of the others (this is referred to as modular design because we are thinking of splitting the
program into separable modules). It is generally much easier to plan, test, and implement individual pieces as you go, rather
than to spend hours writing a big program, and then find it does not work, and have to sift through all your code, trying to find
the bugs.

However, even with all the clever design in the world, you will still occasionally find yourself in the (inevitable) position of having
a big program with a bug in it; in that case, do not despair! Debugging a program does not require brilliance or creativity or
much in the way of insight. What it requires is persistence and a systematic approach, because it requires reasoning not only
about what we want, but about how Python will behave in response to our programs (this is why it's so important to have a
strong mental model of Python!).

First of all, it is crucial to have a test case (a set of inputs to the program you are trying to debug) and to know what the answer
is supposed to be, both for the overall program and for relevant intermediate values. To find a good test case, you might start
with some special cases: what if the argument is 0 or the empty list? What if it is negative? Those cases might be easier to sort
through first (and are also cases that can be easy to get wrong). Then try more general cases.

For most programs in this class, you should simulate your code by hand using an environment diagram before running it in

6.s090 https://smatz.mit.edu/6s090/week2/readings

40 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Python. We know this is tedious, but it really is important for helping you build a strong mental model of how Python behaves.
With more experience, you will be able to make these predictions quickly in your head. But for now, draw it out!

Then the question remains: if your program gets your test case(s) wrong, what should you do? Resist the temptation to start
changing your program around, just to see if that will fix the problem. Do not change any code until you know what is
wrong with what you are doing now, and therefore believe that the change you make is going to correct the problem.

We have a few tools available to us already to this end, which can work reasonably well for small programs: the substitution
model for expression evaluation, and environment diagrams. The act of simulating with these tools may help you find your error.
It is important to remember that Python doesn't know what you want to do, only what you tell it to do, so you must be
systematic when going through your code.

Sometimes, you may not be able to find your bug on paper. For those cases, the method we'll advocate centers around
debugging systematically using print  statements. It is worth noting that nowadays there exist tools other than print  to help
with debugging (logically called debuggers), but it is very rare even after years of experience programming that we find the need
to use such a tool. In our minds, print  is still the most straightforward, most powerful, and most general debugging tool in
existence.

One good way to use print  statements to help in debugging is to use them to display the results of intermediate steps along
the way. Depending on the structure of your program, this might be: the values you are looping over (to make sure your bounds
are correct), a complete solution to a subproblem, a partial solution to the overall problem. For your chosen location(s), you
should print both the quantity of interest and the value you expect that quantity to have. If they are the same, it may be that that
part of the code is working properly, and you can try print ing in other locations.11

One strategy here is to use a variation on binary search. Find a spot roughly halfway through your code at which you can predict
the values of variables, or intermediate results your computation. Put a print statement there that lists expected as well as actual
values of the variables. Run your test case, and check. If the predicted values match the actual ones, it is likely that the bug
occurs after this point in the code; if they do not, then you have a bug prior to this point (of course, you might have a second
bug after this point, but you can find that later). Now repeat the process by finding a location halfway between the beginning of
the procedure and this point, placing a print statement with expected and actual values, and continuing. In this way you can
narrow down the location of the bug. Study that part of the code and see if you can see what is wrong. If not, add some more
print statements near the problematic part, and run it again.

The most important rule of debugging is: Don't try to be smart; be systematic and indefatigable! And don't despair!

7) Summary

In this reading, we introduced a few kinds of compound objects (strings, tuples, and lists) and began to expand upon the ideas
introduced earlier, by introducing new ways of controlling the order in which Python executes statements (for  and while ), and
using these to give more powerful ways to manipulate compound objects.

In this week's exercises, you'll get some practice with these new pieces, as well as some review on the older pieces.

In the next set of readings and exercises, we will introduce more tools and a powerful Python built-in type: the dictionary.

6.s090 https://smatz.mit.edu/6s090/week2/readings

41 of 42 6/16/2023, 11:50 AM

https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_11
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_11
https://smatz.mit.edu/6s090/week2/readings#catsoop_footnote_11
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress


Footnotes

1 It is called a string because, in some sense, the characters it contains are "strung together."

2 Some people like to argue that using single quotes is better style, but we think either one is fine.

3 Also note that, from here forward, our environment diagrams are likely to get a little bit more crowded. As such, we'll start
leaving off the "blob" that represents memory, and simply let the open space represent memory.

4  Explanations from python documentation

5 This document provides a cogent argument for starting with 0.

6 Pronounced: TOO-pullz

7 This syntax might feel a little bit weird for now, but we will expand on it and learn what exactly it does in the coming weeks'
materials.

8  Note that like strings, we can compare tuples to other tuples and lists to other lists using other comparison operators < , > , <=
and >=  if the elements at corresponding indices within the objects are also comparable. So (1, 2, 3) < (1, 2, 4)  is True
because while the first two elements are equal, comparing the third elements 3 < 4  is True . However, an expression like ["a",
"b", "c"] < [1, 2, 3]  will cause an error with a message like TypeError: '<' not supported between instances of
'str' and 'int' .

9 Often, shampoo bottles come with directions that say: "Lather, rinse, and repeat." This is a source of amusement for some
programmers; if we responded to these instructions the way Python does, we would never stop shampooing!

10 See the Wikipedia page for the Collatz conjecture.

11 In fact, this idea generalizes to other domains. For example, when debugging a circuit, one can use an oscilloscope to measure
signals throughout the circuit, and so that device can serve the same purpose as a print  statement.

6.s090 https://smatz.mit.edu/6s090/week2/readings

42 of 42 6/16/2023, 11:50 AM

https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/library/stdtypes.html#string-methods
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF
http://en.wikipedia.org/wiki/Collatz_conjecture
http://en.wikipedia.org/wiki/Collatz_conjecture
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://smatz.mit.edu/6s090
https://canvas.mit.edu/courses/21083/
https://canvas.mit.edu/courses/21083/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/info
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/queue
https://smatz.mit.edu/6s090/progress
https://smatz.mit.edu/6s090/progress

