
Readings for Unit 5
The questions below are due on Sunday July 20, 2025; 10:00:00 PM.

 

Licensing Information

The readings for 6.s090 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. You are free to make and share verbatim copies (or modified versions) under the terms of that license.

Portions of these readings were modified or copied verbatim from the very nice book Think Python 2e by Allen Downey.

PDF of these readings also available to download: 6s090_reading5.pdf

Table of Contents
1) Introduction
2) More Functions

2.1) Environment Diagram Review
2.2) A Mystery Program
2.3) Functions Are First-Class Objects

2.3.1) Function Names are Variable Names
2.3.2) Functions as Arguments

2.4) Understanding the Mystery Program
2.5) Default and Keyword Arguments

3) Assert statements
4) import  statements
5) Generating Graphs with matplotlib
6) Reading and Writing csv Files
7) Summary

1) Introduction
As we have learned throughout the course, functions allow us to abstract away the details of a particular computation so that it
can be computed multiple times on different inputs. This week's readings will, first, revisit the details of how Python interprets
functions. In particular, we'll focus on the issue of scoping (deciding how and where Python looks up variable names). Then,
we'll discuss the "first-class" nature of Python functions and other useful features. We'll also discuss some new ways to test our
code and how to use external packages.

2) More Functions
To begin, we will step through a complex function example with an environment diagram. This builds upon the things we
learned in unit 3's reading, so you may wish to review those now.

2.1) Environment Diagram Review

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 1/20

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://greenteapress.com/wp/think-python-2e/
http://www.allendowney.com/wp/
https://smatz.mit.edu/_static/6s090/unit5/readings/6s090_reading5.pdf
https://smatz.mit.edu/6s090/unit3/readings


First, let's walk through the following piece of (admittedly silly) code:

def f(x):
    x = x + y
    print(x)
    return x

def g(y):
    y = 17
    return f(x+2)

x = 3
y = 4
z = f(6)

a = g(y)

print(z)
print(a)
print(x)
print(y)

Try to use an environment diagram to predict what values will be printed to the screen as this program runs. You can step
through our explanation of how this code runs using the buttons below:

<< First Step   < Previous Step   Next Step >  Last Step >>

STEP 13

This is our final diagram, where the return value from the call to g  is associated with the name a  in the global
frame.

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 2/20



After executing all of the previous steps, we enter a sequence of print statements. By now, we have printed 10  and
9  already. Now we print z , a , x , and y , which have values 10 , 9 , 3 , and 4 , respectively. So all-in-all, we will have
printed the following:

10
9
10
9
3
4

2.2) A Mystery Program

If you find these diagrams tedious, we get it... In the end, there's a reason we want computers to be the one doing this, after all;
they're much better at these operations than we are, and much faster! So, in the short term, this is tedious. But the long-term
benefits are really great! This kind of practice is helpful in building up a mental model of Python's behavior, which is important
so that when you encounter unexpected behavior, you can come back to the model. With practice, this kind of thinking will
become second nature, and you won't have to draw these diagrams out in such detail.

To motivate why environment diagrams might be useful, let's look at another example of a mystery Python program:

Show/Hide Line Numbers

1 functions = []
2 for i in range(5):

3     def func(x):

4         return x + i
5     functions.append(func)

6  

7 for f in functions:
8     print(f(12))

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 3/20



Without running this code, take a few moments to predict what is going to happen when it is run. Which of the
following do you think is going to happen?

It prints 12 , then 13 , then , then 16

It prints 13 , then 14 , then , then 17

It prints 16 , then 15 , then , then 12

It prints 17 , then 16 , then , then 13

A Python error occurs

Something else

Save  Submit  View Explanation  Clear Answer  100.00%

As staff, you are always allowed to submit. If you were a student, you would see the following:
You have infinitely many submissions remaining.

Solution: Something else

Now, only once you have made an educated guess above, type this code into your favorite text editor or IDE and run it. Does the
result match your expectation?

2.3) Functions Are First-Class Objects

We now shift gears to learn about a powerful feature of Python: that it treats functions as first-class objects, which means that
functions in Python can be manipulated in many of the same ways that other objects can be (specifically, they can be passed as
arguments to other functions, defined inside of other functions, returned from other functions, and assigned to variables). In
this section, we will explore how we can make use of this feature in our programs.

2.3.1) Function Names are Variable Names

In a previous unit, we encountered the round  function that can round a number to a given number of decimal places. For
example:

x = int(4.999)  # int always rounds down
y = round(4.5)  # round will round up or down
print(x, y) # 4 5

But what would happen if we took away the parentheses and didn't call the function?

r = round
print(r) # <built-in function round>
print(r(2.4))  # 2

It turns out that we can assign multiple variable names to the same function object in memory. The code above makes r  and
round  aliases to the same built-in function object. This allows us to call r  just like round . This is also the idea behind passing

Back to Top
…

…

…

…

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 4/20

http://en.wikipedia.org/wiki/First-class_function


functions in as arguments to function calls, as we will see in the next section.

2.3.2) Functions as Arguments

Imagine that you wanted to make plots of several different functions. To do that, you would need to figure out which "y" values
correspond to each of a number of "x" values. The following code computes these "y" values for different functions:

Show/Hide Line Numbers

1 import math
2  

3 def sine_response(lo, hi, step):
4     y_vals = []

5     x = lo

6     while x <= hi:
7         y_vals.append(math.sin(x))

8         x += step

9     return y_vals
10  

11 def cosine_response(lo, hi, step):

12     y_vals = []
13     x = lo

14     while x <= hi:

15         y_vals.append(math.cos(x))
16         x += step

17     return y_vals

18  
19 def double_response(lo, hi, step):

20     y_vals = []

21     x = lo
22     while x <= hi:

23         y_vals.append(x * 2)

24         x += step
25     return y_vals

26  

27 def square_response(lo, hi, step):
28     y_vals = []

29     x = lo

30     while x <= hi:
31         y_vals.append(x**2)

32         x += step

33     return y_vals
34  

35 if __name__ == "__main__":
36     print(sine_response(0, math.pi/2, math.pi/8))

37     # [0.0, 0.3826834323650898, 0.7071067811865476, 0.9238795325112867, 1.0]

38     print(cosine_response(0, math.pi/2, math.pi/8))
39     # [1.0, 0.9238795325112867, 0.7071067811865476, 0.38268343236508984, 6.123233995736766e-17]

40     print(double_response(0, 2, .5))

41     # [0, 1.0, 2.0, 3.0, 4.0]
42     print(square_response(0, 2, .5))

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 5/20



43     # [0, 0.25, 1.0, 2.25, 4.0]

Now imagine that instead of just wanting a list of y-values, you wanted these functions to return two lists, one to represent the
x-values, and one to represent the y-values. Making this change or changing anything at all about this program would be a
pain because you would have to manually change each of the above functions.

One way to make changing a program easier is to write it in a way that avoids repetition. After all, sine_response ,
cosine_response , double_response , and square_response  are almost exactly the same, except for how the y-values get
calculated. It would be nice if instead of four functions we could write a single function that could use different equations.

It turns out, we can cut down on a lot of this repetition by creating a more general function called response , which takes in a
function f  in addition to the other inputs.

def response(f, lo, hi, step):
    y_vals = []
    x = lo
    while x <= hi:
        y_vals.append(f(x))
        x += step
    return y_vals

Notice that, inside of the definition of response , we call f , the function that was passed in as an argument. Using response ,
we could compute the same y-values as the sine_response  function as follows:

# These two compute the same response!
y1 = sine_response(0, math.pi/2, math.pi/8)
print(y1) # [0.0, 0.3826834323650898, 0.7071067811865476, 0.9238795325112867, 1.0]
y2 = response(math.sin, 0, math.pi/2, math.pi/8)
print(y2) # [0.0, 0.3826834323650898, 0.7071067811865476, 0.9238795325112867, 1.0]

When we pass in math.sin  as an argument, we do not put parentheses after it. This is because we want to refer to the function
itself (which is called math.sin ), and not to any particular output of the function (which we'd get by calling it, such as in
math.sin(7) ).

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 6/20



Try Now:

Would the following code output the same values for y1  and y2?

y1 = double_response(0, 2, 0.5)
print(y1)
y2 = response(2 * x, 0, 2, 0.5)
print(y2)

Show/Hide

Running the program results in the following output:

y1 = double_response(0, 2, 0.5)
print(y1)  # [0, 1.0, 2.0, 3.0, 4.0]
y2 = response(2 * x, 0, 2, 0.5)
print(y2)  # NameError: name 'x' is not defined

While this was a valiant attempt, it results in a NameError  because x  is not defined. Furthermore,2 *
x  is an expression (not a function!), so even if x  was a variable, we would get a different error:

x = 5
y2 = response(2 * x, 0, 2, 0.5)  # TypeError: 'int' object is not callable
print(y2)  # The program does not execute this line because of the error

This runtime error is caused because passing in 2 * x  evaluates to 10 , which is then the value
associated with f  in the frame where the call to response  is running. When f(x)  is called as part of
the line y_vals.append(f(x)) , a TypeError  is raised because the value of f  is 10  which cannot be
called!

The program below shows the same error:

x = 5
f = x * 2
print(f(x))  # equivalent to print(10(x))
# TypeError: 'int' object is not callable

We can recreate the behavior of double_response  with response  by creating a function to double individual values:

def double(x):
    return 2 * x

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 7/20



y1 = double_response(0, 2, 0.5)
print(y1)  # [0, 0.5, 1.0, 1.5, 2.0]
y2 = response(double, 0, 2, 0.5)   # note double is passed in without using ()!
print(y2)  # [0, 0.5, 1.0, 1.5, 2.0]

Try Now:

How could we re-write the entire original program in terms of the response  function?

Show/Hide

Rewriting the program in terms of response  allows us to go from 43 to 25 lines of code. Also, if we
want to change the output we only have to modify one function instead of four.

Show/Hide Line Numbers

1 import math

2  
3 def response(f, lo, hi, step):

4     y_vals = []

5     x = lo
6     while x <= hi:

7         y_vals.append(f(x))

8         x += step
9     return y_vals

10  

11 def double(x):
12     return 2 * x

13  

14 def square(x):
15     return x ** 2

16  

17 if __name__ == "__main__":
18     print(response(math.sin, 0, math.pi/2, math.pi/8))

19     # [0.0, 0.3826834323650898, 0.7071067811865476, 0.9238795325112867, 1.0]

20     print(response(math.cos, 0, math.pi/2, math.pi/8))
21     # [1.0, 0.9238795325112867, 0.7071067811865476, 0.38268343236508984, 

6.123233995736766e-17]

22     print(response(double, 0, 2, .5))
23     # [0, 1.0, 2.0, 3.0, 4.0]

24     print(response(square, 0, 2, .5))
25     # [0, 0.25, 1.0, 2.25, 4.0]

2.4) Understanding the Mystery Program

Earlier, we looked at the following piece of code as an example of code that is difficult to understand:

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 8/20



Show/Hide Line Numbers

1 functions = []

2 for i in range(5):

3     def func(x):
4         return x + i

5     functions.append(func)

6  
7 for f in functions:

8     print(f(12))

It is somewhat surprising that, despite the looping structure here, when we run this code, we see five 16 's printed to the screen!
Despite the surprising nature of this example, though, we now have all of the tools we need in order to make sense of this
example and to understand why it behaves the way it does. We'll walk through an environment diagram to explain this
behavior, and you're strongly encouraged to follow along (and to reach out for help if any of the steps are unclear!).

We'll start by drawing the diagram just for the first segment of the code (lines 1-5, where we are building up the functions
list). Again, we encourage you to try to stay one step ahead of the drawings below (that is, try to draw out how things will
change during each step, then click ahead and compare your work against our diagram).

<< First Step   < Previous Step   Next Step >  Last Step >>

STEP 16
Looking up x  inside of F1, we find the 12  that is bound locally. But i  is not bound locally. So what do we do? We
follow the parent pointer, and we do find the name i  in the global frame. It references a value of 4  for i , so that's
what we'll use.

Then we add those two values together to get a new int  object representing 16 , which we return.

We'll stop here with the diagram, but note that this result would have been the same regardless of which of these
function objects we called. None of them remembers the value that i  held when it was created; they all simply say
to look up the current value of i  and add it to their inputs! So as we continue to loop and call each of these
function objects in turn, they all produce the same output!

2.5) Default and Keyword Arguments

For functions we've seen so far, we indicate the arguments by positions. For example, with this function:

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 9/20



def percent(num, total):
    if not total:
        # avoid divide by 0 errors
        return f'0?'
    else:
        return f'{(num / total):.1%}'

print(percent(7, 0))  # 0?
print(percent(7, 11)) # 63.6%

When we call percent(7, 11) , python knows that num  should be 7  and total  should be 11  because that's the order we
defined the arguments to come in.

However, there is another way to pass in arguments, using the name instead of the position. For example, we write the
argument name, an equal sign, and the value we want it to take on.

print(percent(total=11, num=7)) # this would still print '63.6%'

Finally, there's a way to specify a function to have optional arguments. We signify these arguments with a variable name as
usual, but we also add an equal sign and a default value. For example, if we wanted our function to have the option of adding
the fraction in addition to the percent, we could add the optional argument verbose .

def percent(num, total, verbose=False):
    extra = ''
    if verbose:
        extra = f' ({num}/{total})'

    if not total:
        # avoid divide by 0 errors
        return f'0?{extra}'
    else:
        return f'{(num / total):.1%}{extra}'

Note that we can still call percent  like we did before. If we don't specify a value for verbose  it will be False  by default as we
indicated in the function definition.

print(percent(7, 11))  # prints 63.6%

But we can also specify a value for verbose . For example:

print(percent(7, 11, verbose=False)) # 63.6%
print(percent(7, 11, verbose=True))  # 63.6% (7/11)

It's common practice to use keyword specification for optional arguments because if there are multiple default arguments, it's
not immediately clear which ones are being set. For example, we can add another default argument to change the number of

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 10/20



digits to round the percentage to as follows:

def percent(num, total, n=1, verbose=False):
    extra = ''
    if verbose:
        extra = f' ({num}/{total})'

    if not total:
        # avoid divide by 0 errors
        return f'0?{extra}'
    else:
        return f'{(num / total):.{n}%}{extra}'

print(percent(7, 11)) # 63.6%
print(percent(7, 11, n=5)) # 63.63636%
print(percent(7, 11, n=0, verbose=True)) # 64% (7/11)

It turns out that default arguments are what allow some of the built-in functions like round  to take in different numbers of
arguments, as we saw in unit 3's readings.

3) Assert statements
So far, we have debugged and tested our programs mainly with print statements. However, Python comes with additional tools
to help us test whether our code actually does what we intend.

Assert statements check a conditional statement. If the statement evaluates to True, the program continues as normal, but if it
evaluates to False an AssertionError will be raised and stop the program.

>>> assert 5 > 4 # evaluates to True, does nothing
>>> assert 5 < 4
...
AssertionError

For example, we could test the add_s  function below with assert statements with the following code:

def add_s(words):
    """
    Given a list of words, output a new list of words with s added to
    the end without modifying the input.
    """
    new_words = []
    for word in words:
        new_words.append(word + "s")
    return new_words

if __name__ == '__main__':
    assert add_s(['can', 'add', 's']) == ['cans', 'adds', 'ss']
    assert add_s(['']) == ['s']

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 11/20

https://smatz.mit.edu/6s090/unit3/readings#_multiple_arguments


    assert add_s([]) == []
    print("done testing")

While this program only prints done testing , it also silently checks that the output matches what we expect, saving us from
the hassle of manually checking whether the printed output is correct or not.

We can optionally add a string at the end of the assert statement to provide a more descriptive error message:

x = 5
y = 4
assert y > x, f'{y=} is not greater than {x=}!'
# AssertionError: y=4 is not greater than x=5!

We can also use assert statements within functions to check that the input is valid. For example:

def square(num):
    assert type(num) == float or type(num) == int, f"Expected float or int, got {num} which is a 
{type(num)}."
    return num ** 2

print(square(5))
print(square("uh oh"))

Outputs:

25
...
AssertionError: Expected float or int, got uh oh which is of <class 'str'>.

4) import statements
So far, we have explored a number of features that are built-in to Python. But sometimes, we want to split a large program into
multiple smaller files or use a package that someone else wrote without having to manually copy and paste all of their code
into our program. import  statements are useful for exactly these kinds of situations.

For example, earlier we saw import math  as part of our response  program. This finds and imports a module called math ,
which becomes a variable in our program. To use the constant pi  or the sin  function which are defined within math , we need
to use dot notation as follows:

import math
print(math)     # <module 'math' (built-in)>
print(math.pi)  # 3.141592653589793
print(math.sin) # <built-in function sin>
print(pi)       # NameError: name 'pi' is not defined

It turns out, the math  module contains quite a number of things, which we can see using the dir  command.

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 12/20



import math
print(dir(math))
"""
['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 
'atan2', 'atanh', 'cbrt', 'ceil', 'comb', 'copysign', 'cos', 'cosh', 'degrees', 'dist', 'e', 'erf', 'erfc', 
'exp', 'exp2', 'expm1', 'fabs', 'factorial', 'floor', 'fma', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 
'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'isqrt', 'lcm', 'ldexp', 'lgamma', 'log', 'log10', 
'log1p', 'log2', 'modf', 'nan', 'nextafter', 'perm', 'pi', 'pow', 'prod', 'radians', 'remainder', 'sin', 
'sinh', 'sqrt', 'sumprod', 'tan', 'tanh', 'tau', 'trunc', 'ulp']
"""

We can avoid using math.  and selectively import only what we want to use with from PACKAGE import THING1, THING2, ...
as follows:

from math import pi, sin
print(pi)    # 3.141592653589793
print(sin)   # <built-in function sin>
print(math)  # NameError: name 'math' is not defined. Did you forget to import 'math'?

Or we can avoid using math.  and import everything using from PACKAGE import *  as follows:

from math import *
print(pi)    # 3.141592653589793
print(sqrt)  # <built-in function sqrt>
print(math)  # NameError: name 'math' is not defined. Did you forget to import 'math'?

Programmers like to use short abbreviations, especially for commonly imported modules like pandas  (pd ), numpy  (np ), and
matplotlib.pyplot  (plt ). We can import a package and give it a different name with import LONG_PACKAGE as PACKAGE :

import pandas as pd
print(pd) # <module 'pandas' from SOME/LONG/FILE/PATH/__init__.py>
print(pandas) # NameError: name 'pandas' is not defined

This is essentially the same as importing a package and then re-naming it without needing to use two different variable names:

import pandas
pd = pandas
print(pd)     # <module 'pandas' from SOME/LONG/FILE/PATH/__init__.py>
print(pandas) # <module 'pandas' from SOME/LONG/FILE/PATH/__init__.py>

As we have seen, import  statements can take many different forms. When in doubt, a plain import PACKAGE  statement will
usually work. If you are interested in learning more about how Python modules work, see the official Python documentation
here. If you want to learn more about the difference between a module and a package, see the StackOverflow post here.

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 13/20

https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html
https://stackoverflow.com/questions/7948494/whats-the-difference-between-a-module-and-package-in-python


Now that we know how import  statements work, we can explore some of exciting functionality we can get from importing
matplotlib.pyplot  to generate graphs and importing the csv  module to read and write .csv  files.

5) Generating Graphs with matplotlib
The matplotlib.pyplot  module provides a number of useful functions for creating plots with Python. In this section we'll go
over a few examples of how to generate different plots.

To import the pyplot  module, add the following to the top of your script:

import matplotlib.pyplot as plt

Once you have done so, you can make a new plot by calling plt.figure()  with no arguments. After that, you can use various
functions to add data to the figures. When you are ready, calling the plt.show()  function with no arguments will cause
matplotlib  to open windows displaying the resulting graphs. You can also add a legend and/or a title to the plot, as well as
labels to the axes, as shown in the example below.

The following code will cause four windows to be displayed. Try running the code below on your own machine to see the
results. Notice that the plt.show()  function does not return until the plotting windows are closed.

Show/Hide Line Numbers

1 import matplotlib.pyplot as plt

2 import numpy as np
3  

4 # here we plot a set of "y" values only; these are associated automatically

5 # with integer "x" values starting with 0.
6 plt.figure()

7 plt.plot([9, 4, 7, 6])

8  
9 # if given two arguments, the first list/array will be used as the "x" values,

10 # and the second as the associated "y" values

11 plt.figure()
12 plt.plot([10, 9, 8, 7], [1, 2, 3, 4])

13 plt.grid()  # this adds a background grid to the plot

14  
15 # we can also create scatter plots.  scatter plots require both "x" and "y"

16 # values.

17 plt.figure()
18 plt.scatter([10, 25, 37, 42], [12, 28, 5, 37], label='scatter')

19 # multiple calls to plt.plot or plt.scatter will operate on the same axes
20 plt.plot([10, 40], [5, 20], 'r', label='a line') # the 'r' means 'red'

21 plt.plot([5, 9, 15, 30], [10, 20, 30, 35], 'k', label='more data')

22 plt.legend()
23  

24  

25 plt.figure()
26  

27 # generates 250 random points using a normal distribution

28 # with a mean of 170 and standard deviation of 10

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 14/20



29 x = np.random.normal(170, 10, 250)

30 plt.hist(x, bins=20, alpha = .5) # 20 bins, 50% transparency
31 plt.hist(np.random.normal(185, 10, 250), alpha = .5)

32 plt.title('A Histogram example')

33 plt.xlabel('A label for x')
34 plt.ylabel('The vertical axis')

35 plt.show()

36  
37  

38 # finally, display the results

39 print('Showing Graphs')
40 plt.show()

41 # Note that all figures need to be closed before the program prints Done

42 print('Done')

Using our graphing skills, we can now finally plot the graphs of the functions we defined earlier:

Show/Hide Line Numbers

1 # Generally import statements go at the top of the Python file,

2 # organized in alphabetical order
3 import math

4 import matplotlib.pyplot as plt

5  
6 def response(f, lo, hi, step):

7     x_vals = []

8     y_vals = []
9     x = lo

10     while x <= hi:

11         x_vals.append(x)
12         y_vals.append(f(x))

13         x += step

14     return x_vals, y_vals
15  

16 def double(x):

17     return 2 * x
18  

19 def square(x):
20     return x ** 2

21  

22 if __name__ == "__main__":
23     sinx, siny = response(math.sin, 0, 5, 0.1)

24     cosx, cosy = response(math.cos, 0, 5, 0.1)

25     doublex, doubley = response(double, 0, 5, 0.1)
26     squarex, squarey = response(square, 0, 5, 0.1)

27  

28     plt.figure()
29     # connected line

30     plt.plot(sinx, siny, label='sin')

31     plt.plot(cosx, cosy, label='cos')
32     # scattered points

33     plt.scatter(doublex, doubley, label='double', color='orange', marker='o')

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 15/20



34     plt.scatter(squarex, squarey, label='square', color='green', marker='s')

35     # axes and title
36     plt.title('A final example')

37     plt.xlabel('A label for x')

38     plt.ylabel('The vertical axis')
39     plt.legend()

40     plt.show()

41     # display to screen -- remember to exit the graph to finish the program
42     print("done")

Running the code above will produce a graph like the one below:

6) Reading and Writing csv Files
Finally, let's talk about one more useful built-in module.

Sometimes the input to your program might be stored in a file. For example, if I am writing a program to process items in my
grocery list, and my grocery list lives in a comma-separated values file called grocery_list.csv, it'd be convenient if my program
could access the contents of that file. Python can do just that!

The first thing to do in order to use a file is to open it. This is done by invoking the built-in function open

We can open a file in different modes, like read mode or write mode. Since we're just reading from the file for now, we'll tell
that to the function open  by writing the string 'r' . If my grocery_list.csv file is in the same directory as my Python program1, I
can write

opened_file = open("grocery_list.csv", "r")

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 16/20

https://docs.python.org/3/library/functions.html#open


opened_file  is now an object. With opened_file  in hand, we can use the csv module to read the file contents.

We must tell Python that we plan to use it by writing import csv  at the top of our file. Then we can create a reader object by
calling a function reader  which the csv  module makes available to us. Our code is now:

import csv

opened_file = open("grocery_list.csv", "r")
reader = csv.reader(opened_file)

reader  is an object that allows for iteration. We can print out all the rows in the file, which the reader stores as lists of strings,
by looping:

for row in reader:
    print(row)

For a few reasons2 (which admittedly aren't likely to be critical for us), if we open a file, we should close it as well, after we're
done with it:

opened_file.close()

Since it's very easy to forget to close a file, Python has some great syntactic sugar which automatically does it for us. We can
create a with/as  block, inside of which the opened file will be open, but outside of which it is automatically closed.

The block doesn't explicitly use the =  assignment operator to set the opened_file  variable, but it still gives opened_file  the
same value as before.

Our final program would look like this:

import csv

with open("grocery_list.csv", "r") as opened_file:
    reader = csv.reader(opened_file)
    for row in reader:
        print(row)

Try Now:

Below is an example grocery list and the Python code we just wrote. Save them into the same directory, and run
read.py  to see the printed list output. Experiment with what happens if you add more columns to the CSV file.3

grocery_list.csv

read.py

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 17/20

https://smatz.mit.edu/_static/6s090/unit5/readings/grocery_list.csv
https://smatz.mit.edu/_static/6s090/unit5/readings/read.py


Try Now:

What do you expect to be printed if we run the following code, which just repeats the printing for loop? Try it and
check.

import csv

with open("grocery_list.csv", "r") as opened_file:
    reader = csv.reader(opened_file)
    for row in reader:
        print(row)
    for row in reader:
        print(row)

Show/Hide

The reason you get this unexpected result is subtle. The relevant mental model is that the reader
object is a sort of one-directional pointer inside the file. That is, it starts at the beginning of the file
when you open it, and it advances forward row by row when it is looped over, but it does not
automatically go back to the beginning. If you wish to use data in a file multiple times, a good
approach is to store the data from the reader into a variable (likely a list or other sequence) just once,
then manipulate the data stored in that variable, instead of going back to the file directly to get the
data again:

import csv

data_rows = []
with open("grocery_list.csv", "r") as opened_file:
    reader = csv.reader(opened_file)
    for row in reader:
        data_rows.append(row)

# Can now use data_rows multiple times

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 18/20



Try Now:

As an exercise, try to write code that will read in the grocery_list.csv file and create a dictionary that maps the name
of the item to the integer quantity of the item (not including the first row).

Show/Hide

This can be accomplished with the following code:

import csv

groceries = {}

with open("grocery_list.csv", "r") as opened_file:
    csv_reader = csv.reader(opened_file)
    for row in csv_reader:
        if row[1] != "Quantity":
            groceries[row[0]] = int(row[1])
            # note all values are read as strings. If we want a value we
            # read to be treated as a number, we need to cast it to an
            # int or a float!

print(groceries)

Now let's say we wanted to add something to our grocery list, like oranges. While we could append this to our data_rows
while running our program, this would not actually change the grocery_list.csv file. Luckily, Python also allows us to write to
files. Check out the write.py file below, which does just that:

import csv

data_rows = []
with open("grocery_list.csv", "r") as opened_file:
    reader = csv.reader(opened_file)
    for row in reader:
        data_rows.append(row)

data_rows.append(['Oranges', 3])

# make a new grocery list file
with open('new_grocery_list.csv', 'w', newline='') as csvfile:
    writer = csv.writer(csvfile, delimiter=',')
    for row in data_rows:
        writer.writerow(row)

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 19/20

https://smatz.mit.edu/_static/6s090/unit5/readings/write.py


Note how when we make the new grocery list, we opened the file in 'w' or write mode. Instead of using the csv library to read
the file, now we create an object that can write individual rows one at a time. Note that each row is a lists of values, where each
element represents the value of a single column.

For more information on the csv library, see the Python documentation.

While working with spreadsheets directly can often be useful, as we'll see in the exercises, using Python to do data analysis can
allow us to more easily analyze large amounts of data, especially when it is in a raw or unprocessed format.

7) Summary
In this set of readings, we revisited the details of how Python invokes functions. We also learned the ways in which Python
functions are first-class objects. They can be treated just like any other objects in Python: among other things, they can be
passed as arguments to functions and can be returned as the result of other functions! We saw assert , which can be used to
test programs. And we explored import statements and python packages such as matplotlib , math , and csv  which can be
used to generate graphs and read and write CSV files.

In next week's readings, we'll investigate one way to use functions: recursion. And we'll talk about strategies for designing large
programs.

 

Footnotes

1 If the files were not in the same directory, we may need to give a lengthier absolute path to the grocery_list.csv file, so Python
knew where to look for it.

2 Some of those reasons: there could be limits on the number of files you can open at a time, opened files might not be
accessible elsewhere, file changes (if we were writing, not reading) might not go into effect until the file is closed, open files can
slow down your program, and it's just cleaner programming.

3 Note this is not my actual grocery list; this part of the reading was written by a previous instructor.

Back to Top

7/14/25, 2:02 AM 6.s090

https://smatz.mit.edu/6s090/unit5/readings#_reading_and_writing_csv_files 20/20

https://docs.python.org/3/library/csv.html

